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前 言

很多孩子都是从简单的字母书开始学习阅读。舒舒服服地坐在大

人温暖的大腿上, 随着字母表的展开, 孩子们从“A 代表 alligator (鳄

鱼)”到“Z 代表 zebra (斑马)”, 静静地聆听着。这样的书也许不是什

么伟大的文学著作, 但却是教孩子认识字母、词汇和语言的有效启蒙

读物。

效仿孩子们的这些字母读物,本书依字母 A到 Z的顺序组织了一

系列小短文, 以这种形式来尝试解释数学的基本原理。不过,本书的内

容相对要深奥一些, D在这里代表 differential caculus (微积分)而不是

doggie (小狗), 因而, 是不是坐在温暖的腿上也就无所谓了。但是, 按

照字母顺序周游知识世界的基本思想还是一致的。

这样的组织方式要求极其严格,读者需要一页一页从头读到尾,但

数学原理毕竟不可能依照拉丁字母的顺序展开它的逻辑进程。因此,有

时候章与章之间的衔接会有些生硬。另外, 某些字母可能包含很多题

材, 而有些字母的题材却相当地生僻。这种状况在孩子们的字母读本

中也会出现, 比如“C 代表 cat (猫)”而轮到 X 却是“X 代表 xenurus

(犰狳)”。读者会发现, 有些话题是硬塞进来的, 很像把 16 码的大脚硬

生生地挤进 8码的小靴子里。设计一个与字母表顺序一致的主题顺序,

确实是对逻辑组织能力的一个不小的挑战。

本书从算术这个 (看似)简单的主题开始。后面章节依次探讨各个

主题,这些主题可能会有所重复,而不同的主题也常常交织在一起。有

时候, 前后相继的几章会一起讨论同一个领域, 例如 G, H, I 这三章讨

论的是几何, 而 K 和 L 这两章讲述的是 17 世纪牛顿与莱布尼茨这两

个死对头。有些章专门讨论某一位数学家,比如 E章的欧拉, F章的费

马和 R 章的高斯。有些章陈述特定结果, 例如, 等周问题及球面的曲
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前 言 v

面面积的阿基米德确定法;有的章则关注一些更宽泛的主题,如数学人

物和这一学科中的女性等。无论是什么样的主题, 每一章都讲述了大

量的历史事实。

顺着这样一条路线, 我们将展示数学各主要分支的概况 (从代数

到几何, 乃至于概率和微积分)。这些章节的设计, 着眼于解释关键数

学思想,采用了不那么正统的教科书的形式,行文间时而会出现一些实

际的证明 (至少是“小证明”)。例如, D 和 L 这两章分别介绍微分和

积分, 因此少不了要多涉及一些数学运算。

然而, 在多数章中, 我们会尽力减少过多的技术性推理。事实上,

本书的主题还都是初等数学范畴内的。也就是说, 本书把主要内容框

定于高中代数和高中几何。数学专业人士在这些章节中不会发现什么

新奇的东西。本书针对的是那些对数学有浓厚的兴趣, 而且还有一定

专业背景的人。

有几个中心思想会不断出现。例如,数学这门学科虽然古老,但却

极为重要;它既涵盖了人们日常生活的方方面面,又深入到那些抽象的

神秘领域; 数学是一门博大精深的学问。而按照字母表的顺序来组织

内容并展示这门大学问的精髓正是本书追求的目标。

在此, 有必要提一下保罗斯 (John Allen Paulos) 的著作《超越

数》(Beyond Numeracy, Knopf 出版社, 纽约, 1991 年), 保罗斯把这

本书描述成“部分是字典, 部分是数学短文集, 还有部分则是数学研究

者的思考”。保罗斯这本生动的著作同样从字母 A到字母 Z描绘了数

学的历程, 他从 algebra (代数) 开始一直写到 (数学家) Zeno (芝诺)。

对某些字母他安排了多个条目, 因此他那本书的覆盖面更宽；而我选

择通过少而长的短文来增加深度。我希望这两本都按字母顺序编排但

风格各异的书能够相得益彰。

当然,任何作者都没有办法做到面面俱到,不可能讨论到所有关键

要点、介绍到所有重要人物, 或涉及所有急待解决的数学问题。每次

都必须做出选择, 而这些选择又要受到内在一致性、题材的复杂程度、

作者的兴趣和专业知识的限制,还要受到完全人为的字母顺序的限制。
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vi 前 言

这类书的选题策划方案决定了它难免挂一漏万, 而大量的好素材最终

都不得不忍痛割爱了。

这样一来, 本书就成为一个人只身面对浩瀚数学宇宙的感悟。跟

随本书在数学知识的海洋中遨游,只能经历无数条路径中的一条,而且

我也自认为我所选择的由 A 到 Z 的顺序并不是最完美的路径。

抛开限制不谈, 我仍然希望本书至少能够展示这门魅力无穷的学

科的概貌。正如 19 世纪数学家索菲亚�柯瓦列夫斯卡娅所说：“许多

无缘更深入认识数学的人士,把数学与算术混为一谈,而且还误认为它

是一门枯燥无味的科学。然而实际上,它是一门需要最强大想象力的科

学。”
①
也许这本书能够再现 15 世纪希腊哲学家普罗克洛斯 (Proclus)

的高尚情怀：“单凭数学便能重振生机, 唤醒灵魂⋯⋯赋予其生命, 能

够化想象为现实, 能够变黑暗为智慧的光芒。”
②

① Ann Hibler Koblitz, A Convergence of Lives, Birkhäuser, Boston, 1983,

p. 231.
② Proclus, A Commentary on the First Book of Euclid’s Elements, trans.

Glenn R. Morrow, Princeton U. Press, Princeton, NJ, 1970, p. 17.
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对我们每一个人来说, 数学都是从算术开始的, 这本书也是一样。

如我们所知, 算术研究的是最基础的数量概念, 即整数 1, 2, 3,· · ·。谈
到最具普遍意义的数学思想,那就是区分个体数目的思想,也就是“计

数”。

“上帝创造了整数, 其他一切都由人制造。”[1] 利奥波德�克罗

内克这句著名论述揭示出整数的内在必然性以及它们无可否认的自然

性。如果我们把数学想象成一个庞大的管弦乐队, 那么整数系就应该

被比喻成一面大鼓：简单、直接、反复, 为所有其他乐器提供基础节

奏。的确, 也有更加复杂的概念, 可以比作数学双簧管、数学法国号和

数学大提琴,我们将在后面的章节中研究其中的一些概念。但是, 整数

总是根基。

数学家称这些无穷无尽的 1, 2, 3,· · ·为正整数, 或更形象地称其

为自然数。在认识了它们并为它们起好名字之后, 我们的注意力就转

向了如何利用一些重要的方法把它们结合起来。最基础的方法就是加

法。这一运算不仅基础, 而且很自然, 因为这些数是一个一个累加而成

的, 即 2=1+1, 3=2+1, 4=3+1, 以次类推。正如强壮的纯种马“天生就

会跑”一样, 自然数也是“天生就会加”。
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2 数学那些事儿：思想、发现、人物和历史

上小学的时候, 我们先是 (几乎)无休止地把数加起来, 然后做相

反的运算, 或者说是逆运算：减法。接下来就是乘法和除法, 这期间似

乎没有一天停止过训练。经过多年这样的教育, 孩子们对算术运算的

掌握程度仍然参差不齐, 尽管花 7.95 美元买来的计算器眨眼功夫就能

毫无偏差地完成计算, 但人们并没有因此而放弃这种训练。遗憾的是,

对大多数年轻人来说, 做算术题已变成了操练和苦差事的代名词。

然而, 在不久之前, 算术一词不仅包含加减乘除这些基本运算, 而

且还包含整数的一些较深层次的性质。例如, 欧洲人所说的“高级算

术”实际上就是“更难的算术”的意思。今天更贴切的术语是数论。

尽管这门学科涉及的范围博大精深, 但是它多少还是以素数概念

为主的。如果一个整数比 1大,而且不能写成更小的整数之积,那么这

个整数就是素数。因此, 前十个素数是 2, 3, 5, 7, 11, 13, 17, 19, 23 和

29。这其中任何一个数都没有除了 1 和它本身之外的正整数因子。

爱争论的读者也许说 17可以写成积,例如, 17=2×8.5或者 17=5×
3.4。但是这些情况下的因子不都是整数。必须记住的是, 数论中的主

角是由整数来扮演的,整数的那些更复杂、更远房的表亲——分数、无

理数和虚数, 都只能委身幕后而干着急。

如果一个比 1大的整数不是素数,也就是说,如果一个数有除了 1

和它本身之外的整数因子, 那么我们就称它为合数。例如, 24=4×6 或

者 51=3×17 就是合数的例子。我们认为整数 1 既不是素数也不是合

数——原因很快就会揭晓。因此最小的素数是 2。

使这些概念形象化的一个简单而且常用的方法, 就是想象必须排

成矩形的一块块正方形地砖。如果有 12块这样的地砖, 我们就有很多

不同的方法把它们排成矩形,如图 A-1所示。当然,这是因为 12=1×12,

或者 12=2×6, 或者 12=3×4(这里我们不区分 3×4 和 4×3, 因为在这

种情况下, 最终地板的形状相同, 只不过一个是对另一个的旋转)。同

样, 48 块地砖能够产生 5 种不同的排列方案, 其对应的分解方案是

48=1×48=2×24=3×16=4×12=6×8。

另一方面, 如果是 7 块地砖, 我们有且只能有一种方案 1×7, 如图
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A-2 所示。如果有人非要用 7 块地砖来铺一间房, 那么这间房子一定

是又窄又长的。根据这个例子我们可以说, 如果一个数只有一种分解

方案 p = 1× p,那么这个数就是素数。如果一个数有多种分解方案,那

么这个数就是合数。

图 A-1

图 A-2

素数虽然是高级算术的核心, 但它们也是导致数学深奥难懂的根

源。理由很简单：尽管整数是通过加法运算逐一构造出来的,但素数和

合数的问题向数学中引入了乘法。数论之难 (当然,还有之美),就在于

数学家试图从乘法运算的角度来理解加法运算的结果。

因此, 自然数就像离开了水的鱼一样。它们是加法运算的产物,却

身处陌生的乘法环境之中。当然, 在我们绝望地放弃整个事业之前, 我

们应该回想一下 3 亿 5000 万年前。那时候, 鱼的确离开了水, 而且同

样是在一个陌生的世界里徒劳无益地翕动着它们的鳃;接着,这些鱼逐

渐进化成两栖类、爬行类、鸟类、哺乳动物和数学家。有时候, 一个新

的不利的环境能够造就完全不一样的结果。

如果不是因为算术基本定理 (注意这里的算术一词使用的是其更

广泛的意义) 这个著名的结果, 素数也许不会在数论中占据中心位置。

算术基本定理, 顾名思义, 就是整个数学中最基本最重要的一个命题,

其内容如下。

算术基本定理：任何正整数 (1除外)都能够用一种方式且只能用
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4 数学那些事儿：思想、发现、人物和历史

一种方式写成素数之积。 ¥
这个论断是一把双刃剑,首先,我们可以把任意的整数表示成素数

的积, 其次, 只有一种表示方式。这必然引导我们得出这样的结论：素

数是乘法的基本元素,所有整数都是由这些基本元素构成的,其重要性

不言而喻。素数的角色与化学元素的角色类似, 因为正像任何自然化

合物都是元素周期表中的 92 种 (或者 100 多种, 其中包括在实验室中

制造出来的元素) 自然元素的某种组合一样, 任何一个整数都可以分

解成它的素数因子之积。我们称之为水的化合物 H2O 分子可以分解

成两个氢原子和一个氧原子。类似地, 化合数 (即合数)45 可以分解成

两个素数因子 3 和一个素数因子 5 之积。模仿水的化学记法, 我可以

把 45 写成 45=325, 然而数学家更喜欢指数形式 45=32×5。

但是, 算术基本定理不仅仅是给出了素数分解。同等重要的是, 它

能够确保这样分解的唯一性。如果一个人确定 92 365的素数因子分解

为 5×7×7×13×29, 那么他的同行, 无论在隔壁房间还是在其他国家工

作, 无论是工作在今天还是工作在距今 1000 个世纪之后, 必定给出完

全相同的素数分解。

这令数学家非常满意。同样,下面的情况也令化学家感到满意：当

一名化学家把一个水分子分解成一个氧原子和两个氢原子时, 其他化

学家绝不可能把这个水分子分解成一个铅原子和两个钼原子。如同化

学元素一样, 素数不仅是基本元素, 而且是唯一的基本元素。

有必要提一下, 因子分解唯一性的愿望要求我们把 1 从素数中排

除。因为,如果把 1归类为素数,那么数 14可能的素数分解是 14=2×7

以及不同的素数分解 14=1×2×7, 14=1×1×1×2×7。素数因子分解的

唯一性不复存在。所以数学家认为给 1 一个特殊的角色会更好些。它

既不是素数也不是合数, 被称为单位。

面对一个正整数,数学家可能希望确定它是素数还是合数,当它是

合数时, 接下来就要寻找它的素数因子。有时候, 这个问题很简单。任

何一个偶数 (大于 2)显然不是素数,因为它有一个因子 2,任何一个其

个位是 5 或 0 的整数也同样是合数。除此之外, 确定素数性质问题就
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相对比较困难。例如,谁能确定数 4 294 967 297和 4 827 507 229哪个

是素数哪个不是素数吗？
①

19 世纪的数学家卡尔�弗里德里希�高斯 (1777―1855), 也许是

他那个时代最伟大的数论学家, 在 1801 年的一份手稿《算术研究》中

非常简洁地描述了这个问题：

素数与合数的区分以及合数的素因子分解的问题是算术中最重要

且最有用的问题之一⋯⋯这门科学本身的高贵性似乎要求人们应该探

索每一个能够解决这一巧妙、著名问题的方法。[2]

从古希腊人到现代数论学家的 2 400 多年间, 数学家们义无反顾

地扑向这一类问题,就如同飞蛾扑火, 前仆后继。沿途众学者们创造出

关于素数的很多猜测。其中有一些已经解决, 而有一些至今仍悬而未

解, 而且有相当数量的问题还没有得到解决。

例如,法国神学家马林�梅森 (1588―1648)在 1644年提出了一个

很有趣的问题。梅森在 17世纪科学中扮演重要的角色,这不仅是因为

他对数论做出了诸多贡献, 而且还因为他承担了数学家之间的信息交

换台的角色。当学者们对数学现状比较关心或者对某个问题感到困惑

时,他们就写信给梅森,而梅森或者知道其答案或者把他们直接引荐给

某位可能的权威。在科学会议、专业期刊以及电子邮件出现之前的那

个时代, 这样的信息交流通道的价值是无法估量的。

梅森痴迷于形如 2n − 1 的数, 即比 2 的某个幂少 1 的数。今天

为了纪念他, 我们把这样的数称为梅森数。显然, 所有这样的数都是奇

数。更重要的是, 它们之中有一些是素数。

梅森马上发现,如果 n是合数,那么 2n−1也一定是合数。例如,如

果 n=12,那么这个梅森数 212−1=4095=3×3×5×7×13是一个合数 (因

为 12是合数);对于合数 n=33, 233−1=8 589 934 591=7×1 227 133 513

同样不是一个素数。

然而, 当幂是素数时, 情况就不是这么显然了。设 p=2, 3, 5, 7, 产

① 641 可整除 4 294 967 297; 另一个数是素数。参见 David Wells, The Penguin

Dictionary of Curious and Interesting Numbers, Penguin, New York, p.192。
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6 数学那些事儿：思想、发现、人物和历史

生的“梅森数”分别是 22−1=3, 23−1=7, 25−1=31, 27−1=127。但是,

如果用素数 p=11作幂,我们得到 211−1=2047;而这个数是 23与 89的

积, 因此它是一个合数。梅森充分认识到 p 是一个素数不能保证 2p−1

也是一个素数。事实上,他断言：“对 2与 257之间的素数而言,使 2p−1

是素数的素数只有 p=2, 3, 5, 7, 13, 17, 19, 31, 67, 127 和 257。”[3]

遗憾的是, 梅森前辈的结论有不合理和缺失的地方。例如, 他漏

掉了数 261−1 是一个素数。另外, 已经证明 267−1 根本不是一个素

数。1876 年爱德华�卢卡斯 (1842―1891) 证明了这一事实, 他使用了

某个论据证明了这个数是合数,这个论据不是很直接,因为它不能很明

确地展示出任何因子。因此在某种意义上, 267−1 的故事仍然很不完

整, 但是对这一故事的最后部分值得再说两句。

那一年是 1903 年, 背景是美国数学学会的一次会议。哥伦比亚大

学的佛兰克�纳尔逊�柯尔是日程安排的演讲者之一。当轮到他上台

时, 柯尔走到会议室的前台, 静静地把 2 与它自己相乘 67 次, 再减去

1,得到一个巨大的结果 147 573 952 588 676 412 927。在见证了这样沉

默无语的计算之后, 迷迷糊糊的观众们接下来看到柯尔在黑板上写到

193 707 721× 761 838 257 287

他仍旧是沉默地计算着。这个积不是别的数, 正是

147 573 952 588 676 412 927

柯尔落座。他完美地演出了一幕哑剧。

在座的观众目睹了把梅森数 267−1明明白白分解成两个大因子的

过程, 他们一度像柯尔一样哑口无语。随后, 他们送上了热烈的掌声,

并站起来向他祝贺！希望这掌声能够温暖柯尔的心, 因为后来他承认

他为此已经计算了二十年。[4]

尽管有了柯尔的因子分解, 但是梅森数仍然是素数的源泉。几乎

可以肯定, 当一家报纸宣布找到一个新的“最大”素数时, 它一定是

2p−1 的形式。例如 1992 年, 已知最大的素数是 2756839−1, 这是一个

有 227 832 位的庞然大物。[5] 但是确定哪些梅森数是素数哪些是合数

仍旧是数论的一个未解问题。
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梅森数 27−1=127 出现在另一个素数故事中。在 19 世纪中期, 法

国数学家德波林尼雅克声称：

每一个奇数都可以表示成为 2 的某个幂和一个素数之和。[6]

例如, 15可以写成 8+7=23+7,而 53=16+37=24+37, 4107=4096+

11=212+11。尽管德波林尼雅克没有声明已经对他的猜测给出了证明,

但是他表示他已经检验了 300 万以内的所有奇数。

因为 2 的任意幂都不可能在它的素因数分解里有奇数, 这样的幂

可以说成是所有数中最纯粹的偶数。德波林尼雅克的陈述说明任意奇

数可以由一个素数 (这个基本的构造积木) 加上一个纯偶数的 2 的幂

构建而成。这是一个大胆的陈述。

而它也绝对是错误的。如果德波林尼雅克真的花了足够的时间对

他的猜测做了上百万次的检验,那么我们只能同情他,因为一个相对较

小的梅森数 127 就反驳了他的结论 —— 我们没法把 127 写成 2 的幂

加上一个素数。如果我们用各种可能的方式把 127 分解成 2 的幂和一

个余数, 就会发现这个余数不是素数, 因此说他显然错了。
127 = 2 + 125 = 2 + (5× 25)
127 = 4 + 123 = 22 + (3× 41)
127 = 8 + 119 = 23 + (7× 17)
127 = 16 + 111 = 24 + (3× 37)
127 = 32 + 95 = 25 + (5× 19)

127 = 64 + 63 = 26 + (3× 21)
(因为 27=128 大于 127, 所以我们无需再进一步计算了。) 今天, 德波

林尼雅克的猜测已被扔入数论的垃圾堆之中, 因为他没有注意到就在

他眼前的一个反例。就如同 19世纪试图作扑翼飞行的人一样, 他野心

勃勃的主张从来就没有飞离地面。

我们已经把化学元素的唯一分解与整数的唯一素数分解对应起

来。尽管这种化学类比很有帮助, 但是仅就一点它就失效了, 因为历

史上所有化学家的全部实验室的工作成果也不过是提供了区区 100多

种元素, 而素数的全体是无穷的。虽说化学元素周期表能够占满一面

墙, 但是类似的素数表则需要可以无限延伸的一面墙。
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素数无穷性的最早证明是希腊数学家欧几里得 (大约公元前 300

年) 给出的, 这一证明出现在他的巨作《几何原本》之中。[7] 下面我们

给出他的证明的一个修改后的版本, 但是它仍然保留了原来证明的独

特优美之处。

为了能够理解这一推导过程,需要两个数论的预备结果,它们都不

是很难。第一个是对于任意一个整数 n, n的两个倍数之差本身仍然是

n的倍数。用符号表示,如果 a和 b是 n的两个倍数,那么 a−b也是 n

的倍数。例如, 70 和 21 都是 7 的倍数, 那么它们的差 70−21=49 也是

7 的倍数; 同样, 216 和 72 都是 9 的倍数, 那么它们的差 216−72=144

也是 9 的倍数。这里没有给出这一事实的一般证明, 但是证明过程真

的很简单。

第二个预备结果也同样非常初等。它说的是任意合数至少有一个

素数因子。同样,我们还是用例子加以说明。合数 39有素数因子 3,合

数 323 有素数因子 17, 合数 25 有素数因子 5。欧几里得在他的《几何

原本》第七卷的命题 31 中对这个定理给出了一个非常巧妙的证明。

除此之外, 证明素数无穷性的必备知识是能够理解利用矛盾的证

明方法。这种证明方法需要我们理解最基础的逻辑二分法：一个陈述

或者为真或者为假。

论证一个命题为真的一个方法就是直接对它加以证明。这是显然

的 (也是一种直白的传统方法)。还有一种不同但也同样显然的方法就

是所谓的反证法, 这种证明是假设陈述为假, 然后从这一假设出发, 利

用逻辑规则去得出不可能的结果。这样一个结果的出现表明在整个推

理过程中的某个地方出现了错误,如果我们的推理步骤是正确的,那么

唯一可能出现问题的地方就是最开始的陈述为假的假设。因此我们必

须驳回这一假设, 上面说的二分法给我们留下唯一的一种可能性：这

个陈述一定是真的。不可否认, 这种间接性似乎让人感觉很奇怪, 而这

种迂回策略似乎也让人觉得没必要。为了强调这种间接性, 在证明素

数无穷性之前我们先考虑一个例子。

假设我们要研究既是完全平方数又是完全立方数的数, 如 64 是
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82 和 43, 729 是 272 和 93。这样的数被称为“sqube”。我们的目标是

要证明下面的定理。

定理 有无穷多个 sqube。

证明 这是一个简单而且非常直接的证明。我们仅通过观察就知道,

如果 n 是一个整数, 那么有 n6=n3 × n3 = (n3)2 是一个完全平方数,

而且 n6 = n2 × n2 × n2 = (n2)3 也是一个完全立方数。所以我们通过

观察得到无穷多的 sqube

16 = 12 = 13 26 = 64 = 82 = 43

36 = 729 = 272 = 93 46 = 4096 = 642 = 163

56 = 15 625 = 1252 = 253 66 = 46 656 = 2162 = 363

76 = 117 649 = 3432 = 493 86 = 262 144 = 5122 = 643 等等

显然这个过程可以无限地持续下去, 因为每选择一个不同的 n 都能产

生一个新的不同的 n6。因此 sqube 的无穷性就直接被证明了。 ¥
遗憾的是, 为了证明素数的无穷性, 我们却没有这样直接的选择。

无论是欧几里得还是其他人都没有像我们从 n6 出发构建出 sqube 那

样构建出素数。我们不能采用正面进攻, 而是必须采用一个非直接的

进攻方式, 利用反证法, 这一方法更巧妙, 更聪明, 而且更优美。事实

上, 这种证明通常充当数学敏感度的试金石：那些对数学上瘾的人觉

得它令他们激动得流泪, 而那些没有此瘾的人则认为它令他们头痛得

流泪。我们让读者自己做个判断吧。

定理 存在无穷多个素数。

证明 (反证法) 假设只有有限多个素数, 并假设它们被记为 a, b,

c, · · · , d。这个集合可能包含 400 个或 400 000 个素数, 但是我们假

设它把全部素数都包含进来。现在我们开始引出一个矛盾。

把这些素数乘起来, 然后再加 1 得到一个新数

N = (a× b× c× · · · × d) + 1

注意,因为我们仅有有限个素数,因此我们能够把它们按这种方式乘起

来,而无穷多个素数是不能这样乘起来的。显然, N 比 a, b, c, · · · , d任
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何一个素数都大, 所以 N 与它们都不相同。因为只有有限个素数, 因

此我们得出结论 N 不是一个素数。

这表明 N 是一个合数。通过我们前面的第二个预备结果, 我们知

道 N 有一个素数因子。因为我们假设 a, b, c, · · · , d 构成了世界上的

所有素数, 因此 N 的这个素数因子一定是其中的某一个。

换句话说 N 是素数 a, b, c, · · · , d 中某一个素数的倍数。到底是

哪个素数无关紧要, 但是为了具体起见, 假设 N 是 c 的倍数。显然积

a× b× c× · · · × d也是 c的倍数,因为 c是其中的一个因子。根据上面

提到的第一个预备知识, N 与 a × b × c × · · · × d 的差还是 c 的倍数。

但是我们定义 N 只比这个积大 1, 所以这个差是 1。

因此我们得出结论：1 是 c(或者是 N 的任何其他素数因子) 的倍

数。这显然是不可能的, 因为最小的素数是 2, 因此 1 不可能是任意素

数的倍数。这里出现了问题。

当我们沿着这一证明返回去的时候, 我们就会明白唯一可能出现

问题的是我们最初假设有有限个素数。因此我们必须拒绝这个假设并

通过反证法得出素数的数目必定无穷的结论。证明完毕。 ¥
这段完美的推理是初等的, 但其意义深刻。它保证素数是无穷无

尽的。在最强大的计算机证明了 2756 839−1是素数之后,我们就能够很

得意地说更大的素数, 或者说无穷多个更大的素数仍旧没有发现。即

便我们不能够指出那些更大的素数中的某一个素数, 但是没有人认为

我们是含糊其词。要感谢逻辑和反证法证明的巧妙, 我们知道了这些

素数的存在。

正因为数论含有这些如此简单而美妙的结果, 所以对于很多年轻

学者来说, 它是他们进入更高级数学的切入点。 美国数学家朱丽

亚�罗宾逊 (1919―1985) 就是其中的一个。1970 年, 罗宾逊是解决

了我们所说的希尔伯特第十问题的三个学者之一, 这个问题是数论中

一个很难的问题, 自希尔伯特 (1862―1943) 七十年前提出以来一直没

有得到解决。在少年时期, 罗宾逊就沉迷于整数的美妙特性之中。“我

对整数的某些定理尤其感到兴奋,”她写道,“我经常在晚上上床之后,
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A 算术 11

把这些定理讲给康斯坦斯 (她的姐姐) 听。不久她发现, 每当她不想睡

觉时就可以问数学问题来让我保持清醒。”[8]

还有一位匈牙利数学家保罗�厄多斯 (Erdos)。在回首他的一生

时, 厄多斯 (1913―) 回忆说：“当我十岁时, 我的父亲给我讲了欧几里

得的证明 [素数无穷性的证明], 从此我就上瘾了。”[9]

厄多斯青年时代有如此多的学术成就而在社会上受到多方保护。17

岁的年龄,对于大多数大一新生来说,他们只单纯期望顺利度过青春期,

而厄多斯却在此时因为给出了两个整数 n 与 2n 之间至少存在一个素

数的证明而在数学界赢得了声誉。例如 8和 16之间一定存在素数,而

80 亿和 160 亿之间也一定存在素数。

这似乎不是一个太引人注目的定理。的确, 几乎在一个世纪前,

它已经被一位俄罗斯的数学家切比雪夫 (Pafnuty Lvovich Chebyshev,

在数学文献上这个名字被拼写成 Chebychev, Tchebysheff, Cebysev 或

Tshebychev, 这应该属于翻译错误而不是因偏爱出现的混乱) 证明了。

但是切比雪夫的证明非常复杂。厄多斯的证明令人吃惊的地方是, 它

如此简单而且出自一位如此年轻的人。

这里顺便提一下,他的定理给出了素数无穷的另一种证明,因为它

保证 2 和 4 之间, 4 和 8 之间, 8 和 16 之间等都有素数。如同我们能

够永远把数翻番一样, 素数也一定是无穷的。

这是保罗�厄多斯的众多定理的第一个定理,他是 20世纪最多产

或许也是最古怪的数学家。甚至在这样一个违反常规的行为被视作正

常行为的行业中, 厄多斯也是一个传奇人物。例如,这位年轻人受到百

般的爱护, 到了 21 岁, 也就是在给出上面提到的关于素数的定理的四

年后才第一次自己往面包上涂黄油。后来他回忆说：“那时我刚到英格

兰去学习。有一天, 在用下午茶时, 桌子上放了面包。我实在不太好意

思承认我从来没有涂过黄油。于是我尝试着做。这不太难。”[10]

同样不寻常的是厄多斯没有固定的住所。他游遍世界各地的数学

研究中心, 拎着手提箱到处走, 并且坚信每到一处都会有人留他过夜。

由于他不间断地四处游历,这位漂泊的数学家与很多同行合作,联合发
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12 数学那些事儿：思想、发现、人物和历史

表了很多文章, 这在历史上无人能及。他就是这样一条《圣经》谚语的

写照：人不能仅靠 (涂黄油) 面包活着。

作为回报,数学界想出了一种出奇的方式来肯定他所产生的影响：

厄多斯数。[11] 厄多斯本人有厄多斯数 0; 任意与厄多斯联合发表文章

的数学家有厄多斯数 1; 没有直接与厄多斯合作,但与直接与厄多斯合

作发表过文章的人合作发表过文章的数学家就有厄多斯数 2; 与厄多

斯数 2 的人合作发表过文章的人有厄多斯数 3; 依此类推。就如同一

棵巨大的橡树一样, 这棵厄多斯树跨越了整个数学界。

这样, 有了素数、合数、梅森数乃至厄多斯数, 很显然, 对数论的

热情没有熄灭的危险。对从高斯到罗宾逊, 从欧几里得到厄多斯这众

多的数学家来说, 数学中没有哪一部分能像高级算术那样美妙、优雅、

充满无穷的魅力。
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首先, 我们强调, 伯努利试验不是佛罗伦萨的法律程序, 而是初等

概率论的基础, 在我们对不确定世界的理解中起着重要的作用。

伯努利试验是一个有两种结果的简单试验。它的结果是成功或失

败,黑或白,开或关。没有中间的立场,没有妥协的余地,没有优柔寡断

的安慰。

这样的例子太多了。我们观察从一副纸牌中拿出的一张牌, 它或

者是黑色或者是红色。我们接生一个婴儿, 他或者是女孩子或者是男

孩子。我们经历 24 小时的一天, 或者遇到流星或者遇不到流星。在

每一种情况下, 很方便设计一种结果为“成功”, 另外一种结果为“失

败”。例如,选出一张黑色牌,生一个女儿,没有遇到流星都可以标识为

成功。然而, 从概率的角度看, 选择红牌、儿子或者遇到流星为成功也

是不会产生差异的。在这种场合下, 成功一词没有价值取向的色彩。

单个伯努利试验没有太大的意义。然而, 当我们反复进行伯努利

试验, 去观察这些试验有多少是成功的, 多少是失败的, 事情就变得意

义丰富了, 这些累计记录包含很多潜在的非常有用的信息。

当我们做试验时, 有一条关键的条件：这些重复的试验必须是相

互独立的。独立这一词不仅有专业定义而且还传达了适合我们目标的
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含义：如果一个事件的结果绝不会对另一个事件的结果产生影响, 那

么这两个事件是相互独立的。例如, 史密斯生一个儿子与约翰逊生一

个女儿是两个相互独立的事件。又例如, 投一枚一角硬币与投一枚一

分硬币的结果 (正面和反面)也是相互独立的, 一枚硬币的结果不会对

另一枚硬币的结果产生影响。

但是, 如果我们研究一副纸牌中的两张牌, 一次只能抽一张, 并认

为黑色纸牌是成功,于是在抽完第一张纸牌后再抽第二张纸牌时,独立

性就丧失了。因为,如果第一张牌是梅花尖 (一次成功),那么它将影响

第二次的抽取结果,它使得第二次抽出黑色纸牌的可能性减少,第二次

抽出尖的可能性也会减少, 而且绝对不可能是另外一张梅花尖。

幸运的是,这种独立性的缺失可以通过一个简单的对策加以弥补。

在抽取第一张纸牌之后, 把它放回到原来的纸牌中, 重新洗好, 然后再

抽。因为我们的第一张纸牌已经重新混入到原来的纸牌中, 它的身份

对第二次抽取已经不再产生影响。在这种意义下, 独立事件要求为每

一次试验创造一个不留痕迹的平台, 从而使得每次试验成功的概率保

持相同。

伯努利试验的最鲜明例子出现在博弈游戏中, 例如投掷硬币或者

骰子。对于硬币来说, 每一次投掷显然是独立的, 从而在每次投掷时成

功的概率 (比如说得到正面的概率) 是相同的。说一枚硬币是“平衡

的”, 我们的意思是这个概率正好是 1/2。对于一枚均匀的骰子, 如果

我们指定投出 3 是成功, 那么我们成功的概率总是 1/6。

但是, 如果我们投掷一枚硬币五次会发生什么呢？在这五次投掷

中得到三个正面和两个反面的概率是多少呢？推而广之, 如果我们投

掷这枚硬币 500 次, 得到 247 次正面和 253 次反面的概率是多少呢？

这可能是看似噩梦般的问题, 但是它的解却出现在早期的概率论杰作

之一——雅各布�伯努利 (1654―1705) 的《猜度术》之中。

伯努利是瑞士本土人, 他的祖父、父亲和岳父都是富裕的药剂师。

他抛弃了臼和研棒,去大学研究他的神学,并于 22岁那年获得了学位。

然而, 尽管他的家族都与医药有关, 而他接受的是布道方面的教育, 但
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16 数学那些事儿：思想、发现、人物和历史

雅各布�伯努利真正感兴趣的却是数学。

从 17 世纪 70 年代末开始直到他去世, 伯努利一直都是世界上最

杰出的数学家之一。他是一个天才但却有令人讨厌的个性, 目空一切,

对那些不具天赋的人的努力嗤之以鼻。例如, 在研究了我们今天所谓

的“伯努利数”(为了纪念他而命名) 之后, 雅各布找到了对正整数幂

求和的一种非常巧妙的捷径。他说“我用了不到七分半钟”就确定了

前 1000 个正整数的十次幂的和。也就是说, 他用了不到十分钟就确定

出下面的和。

雅各布�伯努利

(瑞士, 巴塞尔, Birkhäuser Verlag AG 出版社许可翻印,

这是 1969 年由 Joachim O.Fleckenstein 编辑的《雅各布�伯

努利全集, 卷 1：新星, 自然哲学》中的一幅画像)
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110 + 210 + 310 + 410 + · · ·+ 100010

=91 409 924 241 424 243 424 241 924 242 500

这的确是个巨大的和。但是他在一份亲自主笔的评论中自我标榜地说

他的捷径“清楚表明布里奥的工作是多么地无用⋯⋯其中他只不过是

费了好大劲计算了上面的前六个幂的和, 而我们用一页纸就完成了全

部计算。”[1] 这个人对可怜的伊斯梅尔�布里奥没有一点同情心,他不

仅拥有一名数学家的非凡洞察力, 而且也不同寻常地自负。

约翰�伯努利图 (卡内基–梅隆大学图书馆惠允)
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雅各布�伯努利的巅峰时期正是戈特弗里德�威廉�莱布尼茨发

明微积分的时期, 雅各布是普及这一丰硕成果的重要人物之一。同任

何新发展起来的理论一样, 微积分得益于那些紧跟其发明者脚步的人,

得益于那些才华不如莱布尼茨的学者, 他们的贡献是对这一门学科加

以整理, 这是必不可少的。雅各布就是这样一位奉献者。

在这项事业中, 他有一位令人不安的同盟者约翰 (1667―1748), 就

是他的弟弟,与他的名字首写字母相同,这是一对非常有才华但爱争吵

的伯努利兄弟。事实上,雅各布是其兄弟们的数学老师。在以后的岁月

里,他也许后悔把约翰教得如此好,因为事实证明这位弟弟是一位与他

不相上下的数学家, 甚至也许超过了他的老师雅各布。兄弟之间为争

夺数学霸权展开了激烈竞争。当约翰解决了曾经难倒他哥哥的某个问

题时, 他总是毫不掩饰自己的兴奋, 尽管雅各布故意叫约翰为他的“小

学生”,暗示约翰只是在效仿他导师的才华。这两个伯努利都算不上是

高尚的人。

图 B-1

一次著名的冲突是因为悬链线的问题。悬链

线是固定在墙上两点的悬链所形成的曲线 (参见图

B-1)。熟悉高中代数的人也许猜测这条链沿着一条

抛物线弧垂悬, 这样一个完美的合乎逻辑的猜测早

在 17 世纪初就被伽利略这样的人物想到了。但是

这样悬挂的链其实不是抛物线, 到了 1690 年, 雅各

布�伯努利正在为确定这条曲线的真实身份而非常

努力地研究着, 也就是说, 他要给出它的方程。
事实证明, 雅各布不能胜任这项任务。当约翰给出其答案时不难

想象雅各布惊讶的样子。后来约翰在炫耀他的胜利时说, 这个解决方

案“我全身心地去研究,剥夺了我整晚的休息”。[2] 他气人的本领与他

的才华一样出色,约翰匆匆忙忙跑到雅各布面前,告诉一直苦思冥想的

哥哥问题的答案。雅各布一下子垂头丧气。

但是, 雅各布要实施他的报复。这一次的战场是所谓的等周问题,

说的是从有相同周长的曲线中, 区分出哪条曲线围出的面积最大。我

们将在第 I 章中更详细地讨论这个问题, 但是现在可以先看一下雅各
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布�伯努利是如何在 1697年运用微积分来描述这个问题的。他的方法

要对付一个难缠的所谓的三阶微分方程的数学对象, 这项工作为我们

现在称为变分法的这一有着广泛研究前景的新数学分支指出了道路。

弟弟约翰与他的意见不同, 并说已经用一个相对简单的二阶微分

方程解决了这个等周问题。如同以往伯努利家的情况一样, 他们的争

吵变成对抗, 最终只是因为缺少弹药而停止。

然而,这次是雅各布笑到了最后,因为弟弟的二阶微分方程是不正

确的。遗憾的是, 实际上雅各布从来就没有机会大笑, 哪怕是微笑, 因

为 1705年他就去世了,而当时约翰对这个问题的错误解仍然神秘地密

封在巴黎学院的办公室。有这样一种推测, 约翰已经认识到了自己的

错误,并设法把这个错误偷偷地掩藏起来,这样就不会在哥哥享受其成

果时而忍受公开的羞辱。[3]

这些趣事让我们看到他们兄弟之间的不和, 因此发生下面的事也

就一点都不奇怪了。当时人们都认为约翰是编辑他刚去世的哥哥的

论文的最合适的人选, 但是雅各布的遗孀却阻止了这件事, 因为她担

心有报复心的约翰会破坏雅各布留下的数学遗产。[4] 霍夫曼 (J. E.

Hofmann)在《科学家传记大辞典》中对雅各布的个性也许做了最好的

描述：“他任性、固执、好斗、有报复心, 而且受自卑心的困扰, 但是他

对自己拥有的才能还是有自信的。因为有这样的个性, 因此他必然会

同有相同倾向的弟弟发生冲突”。[5] 的确,雅各布和约翰是有傲慢自大

坏名声的那种人。

暂且不谈他们兄弟之间的竞争,我们回到前面提到的概率问题：如

果投掷一枚均匀的硬币五次, 产生三次正面和两次反面的概率是多少

呢？在《猜度术》中, 雅各布�伯努利给出了一般规则：如果我们实施

重复操作 n + m 次独立试验的一个实验 (即 n + m 次伯努利试验), 其

中任意一次试验成功的概率是 p, 而失败的概率是 1 − p, 那么正好得

到 n 次成功和 m 次失败的概率由下面的公式给出
(n + m)×(n + m− 1)×· · ·×3×2×1

[n×(n− 1)×· · ·×3×2×1]×[m×(m− 1)×· · ·×3×2×1]
pn(1− p)m

为了化简上面这个公式, 数学家引入了阶乘的记法：
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n! = n× (n− 1)× · · · × 3× 2× 1

例如, 3! = 3× 2× 1 = 6, 5! = 5× 4× 3× 2× 1 = 120。(我们要强调阶

乘中的感叹号不是要求我们大点声音说话。) 由于有了这样便利的记

法, 伯努利结果则化简成：

Prob (n 次成功, m 次失败) =
(n + m)!
n!×m!

pn(1− p)m

因此,在投掷一枚均匀的硬币五次之后,得到三个正面的概率就是

设 n = 3, m = 2, p = Prob(投出一个正面)=1/2。于是有

Prob(3次正面, 2次反面)=
(3 + 2)!
3!× 2!

(
1
2

)3 (
1− 1

2

)2

=
5!

3!× 2!

(
1
8

)(
1
4

)

=
120

6× 2

(
1
32

)
= 0.3125(或者略大于 31%)

同样, 为了求投掷一枚骰子 15 次, 正好得到五个 4 的概率, 我们声明

得到一个 4 是“成功”, 且指定值：
n= 5(成功的次数)

m= 15− 5 = 10(失败的次数)

p= 1/6(成功的概率)

于是经过 15 次独立的投掷, 得到 5 个 4 的概率是

(5 + 10)!
5!× 10!

(
1
6

)5 (
1− 1

6

)10

=
15!

5!× 10!

(
1
6

)5 (
5
6

)10

= 0.0624

一个几乎不可能发生的事情。

回到早前的一个问题, 投掷一枚硬币 500 次, 得到 247 次正面和

253 次反面的概率是

(247 + 253)!
247!× 253!

(
1
2

)247 (
1− 1

2

)253

=
500!

247!× 253!

(
1
2

)247 (
1
2

)253

这个结果尽管正确, 但这个概率太复杂, 无法手算得到, 而且即使有一

个高级的袖珍计算器也无法实现计算 500! 这样大的数的愿望 (对此怀

疑的人不妨试一试)。我们将在第 N 章看到近似求解这种概率的一个

技术。但是, 即使这样的直接计算无法进行, 这个公式在理论上也还是

很完美的。它是求任意一系列独立伯努利试验概率的关键。
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遗憾的是, 日常生活中的大多数事件实际上都比投掷硬币复杂得

多, 这几乎是太纯粹的概率状况。确定一个 25 岁的人能活到 70 岁以

上的概率,或者确定下一个星期二雨量超过一英寸的概率,或者确定一

个正驶入交叉口的汽车要右转弯的概率, 求解这些问题绝不是一件容

易的事。这些事件因为现实世界的纷繁复杂而使人一筹莫展, 正如雅

各布说的那样：

我要问, 列举所有可能的情况, 能够确定在人身体不同部位、不同

年龄阶段折磨他的致命疾病的数量吗, 或者说能够确定一种疾病比另

外一种疾病更具有致命性,如瘟疫比水肿更能够致人死亡,或者说水肿

比发烧更能够致人死亡, 基于这样的认识就能够预测未来一代的生存

与死亡之间的关系吗？[6]

这样的概率超出了数学的范畴了吗？概率论只能被归类于模拟博

弈游戏吗？

伯努利在那本也许是他最伟大的遗产《猜度术》中,作为一个结果

对这个问题给出了非常有力的回答。事实上, 他把这个问题称为他的

“黄金定理”, 并写道：“就其新颖度和其强大的实用性, 再加上较大的

难度,这一定理就其力度和价值已经成为这一学说之最”。[7] 今天所谓

的伯努利定理就是通常所说的大数定律, 它被认为是概率论的中流砥

柱之一。

为了对它的性质有所了解, 再次假设我们正在操作的是独立的伯

努利试验,其中每一次试验的成功概率为 p。我们知道操作的总试验次

数, 称其为 N , 而且还知道结果成功的试验次数, 称其为 x。于是分数

x/N 就是我们观察到的成功的次数比例。

例如, 如果投掷一枚均匀的硬币 100 次, 产生 47 次正面, 观察到

的正面比例是 47/100=0.47。如果再将这枚硬币投掷 100次,又产生 55

次正面, 总的成功比例是
47 + 55

100 + 100
=

102
200

= 0.510

没有什么理由阻止他人再把这枚硬币投掷 100次,或者投掷 1亿次。关

键的问题是经过长时间的操作, 成功的比例 x/N 会发生什么变化呢？
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当实验的次数增加时, 应该没有人对发现这个比例接近 0.5 而感

到惊讶。一般来说, 当 N 变大时, 我们会看到 x/N 的值趋向一个固定

的数 p, 这是任何一次单次试验的成功的真概率。所以, 这里就显示出

这个定理的威力,当成功的概率 p未知时,在较大次数的试验当中,成

功的比例应该是 p 的一个较好的估计值。用符号表示, 我们应该写成
x

N
≈ p, 当N较大时(≈意思是“近似等于”)

加上少数几个重要条件, 这就成了大数定律。伯努利定理之所以

如此著名,并不是因为它道出了一个真理,而是因为很难用严格的论据

加以证明。雅各布自己也以他那极具代表性的尖刻语言承认“即使是

最笨的人也应该本能地理解 [大数定律]”。[8] 然而,为了给出这个定律

的正确的证明,他付出了 20年的努力,给出的证明占据了《猜度术》好

几页。[9] 事实证明他的评论“这一原理的科学证明并不是那样简单”

是有意轻描淡写的陈述。

我们应该说说前文提到的关于伯努利定理的“重要的条件”。因为

它本质上是一个概率陈述, 它应该是伴随着任何机会都会发生的不确

定性。我们不能绝对确定投掷一枚硬币 1000 次产生正面的比例将比

仅投掷 100 次产生正面的比例更接近 0.5。完全有可能投掷 100 次时

产生 51 次正面, 而且有可能投掷 1000 次时只产生 486 次正面。因此

这个“小样本”估测 x/N = 51/100 = 0.51 实际上应该比“大样本”估

测 x/N = 486/1000 = 0.486 更接近投掷正面的真实概率。完全有可能

发生这样的事情。

这样说来, 如果我们再投掷 1000 次, 那么每一次投掷都产生正面

也不是完全没有可能的。有可能产生一个惊人的结果, 2000 次投掷产

生 1486 次正面, 于是估测概率是 1486/2000=0.743。在这样的情况下,

大数定律似乎已经不好使了。

但事实并非如此。因为雅各布�伯努利证明的是, 对于任意给定

的小容差, 比如说 0.000 001, 估测概率 x/N 与真实概率 p 的差是这个

小容差或者比它更小的可能性可以接近于 1, 条件仅仅是增加试验次

数。只要做足够多的试验, 我们几乎可以肯定, 或者使用伯努利曾经使
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用的词汇道义上肯定, 我们的估测值 x/N 与真实概率 p 之差一定在

0.000 001 以内。[10] 当然, 我们不能百分之百确定 p 与 x/N 之差小于

0.000 001, 但是大量的试验可以使得我们能够充分肯定这种推断不至

于太离谱。

上述情况, 即 2000 次投掷均匀硬币而掷出正面的概率被估测为

0.743, 其可能性有可能小于一个人正在看本章时遇到流星的机会。另

外, 即使出现了这样一个不可能的估测值, 伯努利仍然非常自信地声

称, 通过做大量的试验, 2000 次, 200 万次或更多, 这个比例 x/N 肯定

趋向于 0.5。

我们要强调,即使对于这样少的限制条件,大数定律仍然是可证明

的, 这一点很重要。这不同于我们生活中所遇到的其他著名定律,从墨

菲定律到万有引力定律。这些或者是被普遍认可的陈词滥调 (如墨菲

定律), 或者是被高度赞誉的物理模型 (如万有引力定律), 它们都要随

时根据证据而得到修正。但是大数定律是一个数学定理, 而且已经证

明在必须遵守的逻辑限制之下, 它永远成立。

另外, 它有它自己的用途。保险公司用于调整精算表格的生存概

率就是依据大量类似试验 (例如人的存活和死亡)的结果。天气预报员

预报的下雨概率也是如此。

或者,考虑这样的例子,回到 18世纪,求一位妇女生一个男孩儿而

不是女孩儿的概率。如何能够用某种先验的方式计算出这一概率呢？

遗传的复杂因素严重破坏了事先用某种纯理论方法确定生一个男孩儿

的概率状况。于是, 我们被迫起用“既成事实”或者后天验证, 以伯努

利定律为武器进行处理。

在 18 世纪早期, 这个特殊的问题就一直萦绕在英格兰的约

翰�阿巴思诺特 (John Arbuthnot) 头脑之中。如同其他前人一样, 他

从人口调查记录注意到每年出生的男孩子比女孩子稍微多一些, 并认

为这种不平衡已经存在“好多年, 不仅在伦敦, 而且在全世界”。[11] 阿

巴思诺特试图借助上帝之佑来说明这一现象。几年后, 雅各布和约翰

的侄子尼古拉斯�伯努利继承了家族拥有的数学天分, 运用大数定律
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得出结论说出生男孩子的概率是 18/35。换句话说,大量的出生记录显

示出一个显著而稳定的趋势, 男对女是 18比 17。伯努利定理“不仅在

伦敦, 而且在全世界”得到应用。

图 B-2

直到今天它仍在起作用。一项被

称为蒙特卡罗方法的技术在伯努利定

理和计算机强大威力的帮助下已经变

得非常重要, 因为它能够帮助科学家

以概率的模式模仿大范围的随机现象。

下面就是蒙特卡罗方法的一个相当简

单的示例。假设我们希望求得一个不

规则形状的湖面的表面积。我们可以

沿着湖边走, 或者照一张俯视的照片,

但是湖的弯曲和其表面上的不规则边

界往往很难用任何数学公式确定其面

积。

假设我们的湖成图 B-2的形状,这

里我们已经在图上给出了 x 和 y 的坐标。因为我们计划在第 L 章中

要重温这个例子, 因此选择了一个形状比较规整的湖, 是一个以 x 轴

和方程为 y = 8x− x2 的抛物线为边界的湖。

我们将用概率方法估测它的面积。首先,如图所示在 8×16的矩形

内圈出一个区域。其次, 任由计算机在这个矩形内寻找任意多个 (x, y)

点。例如, 计算机也许能够找出如图所示的两个点 A = (3.5, 7.3), B =

(6.0, 13.7)。

现在,我们要问计算机,这些随机的点是落在这个湖内还是落在了

湖外。在我们的例子中, 这个问题很容易解决。检验点 A, 我们在抛物

线方程中令 x = 3.5, 于是求得对应的值 y = 8 × 3.5 − (3.5)2 = 15.75。

这表明点 (3.5, 15.75) 在抛物线上。于是对点 A 来说, 第一个坐标相

同, 而第二个坐标只有 7.3, 则落在了抛物线的里面, 即在湖内。

类似地, 当考虑点 B 时, 我们在抛物线方程中代入它的第一个坐
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标, 得到对应值 y = 8× 6− 62 = 12。因此 (6,12) 在抛物线上, 所以点

B = (6, 13.7)落在抛物线外面,因此砸到干干的地上。只需要计算机几

毫秒的时间,我们就能选择很多随机的点,并确定它们是在湖内还是在

湖外。

现在看一下根据蒙特卡罗观点的关键观测：随机选出的点落入湖

内的精确概率记为 p, 它是湖面占据矩形 8× 16 的面积的比例。即

p= Prob(位于这个湖内的随机点) =
湖的面积

圈出的矩形面积

=
湖的面积

8× 16
=
湖的面积

128

当然, 我们只有先知道这个湖的面积 (这正是我们要求的未知量)

才能计算出这个概率。但是, 我们能够根据 x/N 来估测这个湖面的概

率 p, 即落入阴影部分的比例。利用长期的成功比例来近似真实概率,

这本身就是大数定律的直接运用。

对于这个例子, 我们的计算机在矩形内选出 500 个点, 而且发现

其中有 342 个点落入湖内。因此, 我们估测

342
500

≈ p =
湖的面积

128
经过交叉相乘之后, 这个估测值是

湖的面积 ≈ 128× 342
500

= 87.552(平方单位)

因此, 在没有借助其他任何东西, 只是利用了伯努利大数定律的情况

下, 我们就得到了这个湖大小的粗略的近似值。

我们如何能够得到一个更精确的估测值呢？我们只简单地让计算

机在这个矩形内不是选出 500个点而是 5000个点。在这个例子中, 它

发现其中有 3293 个点在这个湖内, 因此得到

3293
5000

≈ p =
湖的面积

128
所以也有

湖的面积 ≈ 128× 3293
5000

= 84.301(平方单位)

图灵社区会员 cindy282694 专享 尊重版权



26 数学那些事儿：思想、发现、人物和历史

当然,我们还可以让计算机选择 50 000个随机点,或者 500 000个

点, 或者不惜用电让它选出任意多个点。那么, 我们会更加有信心得到

这个抛物线形湖的面积的估测值。

这是一个初等的模拟实例, 现实世界中很多更加奇妙的现象都可

以利用蒙特卡罗方法加以研究。另外, 正如我们将在后面看到的那样,

例子中的抛物线的面积实际上可以用积分方法精确地得到。但是这个

例子仍然让我们感受到了概率的威力。

自从雅各布�伯努利证明他的伟大定理以来已经过了三个世纪。

他原来的论证已经被更加有效地反映这一事物本质的简化版本所取代,

这样的情况在数学中很常见。今天的标准证明是根据俄罗斯数学家帕

夫努季�切比雪夫的一个结果, 此人我们在第 A 章中遇到过。这一

方法, 以及如期望值、随机变量的标准差等一系列概念使得我们能够

把大数定律的证明简化成只有一页, 同时表明伯努利的证明的确很麻

烦。然而, 以伯努利所不具有的宽容精神, 我们将坚决抵制下面这样的

念头：即仅因为他需要一章来做“我们只需要一页纸就可以完成的工

作”, 而把他的工作贴上“无用”的标签。

这就是进步的常态。但是, 在所有的人类奋斗历程中, 最好要记住

我们的前辈。正如今天的光盘技术能够播放出的音乐要远远优越于 19

世纪留声机播出的刺耳声音,同样,现代概率论也缩短并简化了伯努利

的大数定律的证明。尽管一系列的进步已经说明托马斯�爱迪生的原

创是多么地陈旧, 但是我们仍对他满怀敬仰之情。我们应该因为伯努

利自己倍感骄傲的黄金定理而对他表示出同样的尊敬。
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前两章介绍了数论和概率两个领域的内容。下面我们考虑一个几

何话题, 这是数学的一个重要分支。正如我们将在第 G 章中所看到的

那样, 几何是希腊数学家最关注的领域,拥有悠久而光辉的历史。在古

典世界中,这门学科如此著名,以至于数学家和几何学家二者成为了同

义词。在很大程度上, 几何就是数学家的工作对象。

当然, 我们可以从许多不同的角度介绍几何。本章讲述的是圆, 这

是最重要的几何概念之一。圆简单、端庄、优美, 充分展示了二维的完

美。在希腊人的手里, 这些圆不仅自身非常重要,而且是展示其他几何

思想的主要工具。

圆这一术语已经成为我们的常用词汇。根据定义, 圆是到一个固

定点距离相同的所有点组成的平面图形。这个固定点称为圆心, 而所

有点到圆心的相同距离称为半径。通过圆心穿过圆的直线距离称为直

径,这个圆形曲线的长度,即做一次完整圆周运动所经过的距离称为周

长。

第一次认识圆的初学者也会很快认识到这样一个事实：所有圆都

有相同的形状。可能有的大些而有的小些, 但是它们“圈”的样子, 它

们的完美的圆形却完全是相同的。数学家称所有圆都是相似的。不妨
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作个对比,我们说并不是所有的三角形都有相同的形状,并不是所有的

矩形都有相同的形状, 并不是所有的人都有相同的体态。我们很容易

想象高而细长的矩形, 或者高而瘦的人。但是, 高而细长的圆根本就不

是圆。

所以, 圆都有相同的形状。在这些枯燥的观察之后有一个重要的

数学定理：对于所有圆来说周长与直径的比率是相同的。无论是有大

圆周和大直径的大圆,还是有小圆周和小直径的小圆,周长与直径的这

个相对比率都是相同的。设 C 表示周长, D 表示直径,数学家说,对于

所有的圆, 比率 C/D 是常数。

我们把这个常数称作什么呢？数学家从不会错过引入新符号的机

会,他们选择了希腊字母表中的第十六个字母 π,从此使它成为一种数

学永恒。这一选择非常合适, 因为是希腊人首先对圆进行数学研究的,

但是希腊人自己并不在这种意义之下使用 π。

为了形式化这个概念,我们考虑图

C-1 并引入如下定义。

定义 如果 C 是圆的周长, 且 D 是

它的直径, 那么 C/D = π。

交叉相乘后,这个定义产生了一个著名

的公式 C = πD。或者, 由于直径是半

径的两倍,我们利用这个关系得到一个

等价的著名公式 C = 2πr。

因此, π提供了周长 (一个长度)和

半径 (另一个长度) 之间的关系。这非

图 C-1

常重要,因为同样是这个常数提供了圆的面积与其半径之间的关系,尽

管这一事实不是十分显然的。讨论一下为什么会这样还是很值得的。

其重要思想是用一个内接正多边形来近似一个圆, 所谓的正多边

形指的是所有边都有相同长度且所有角都有相同大小的多边形。与圆

比起来,多边形是一个更容易接受的图形,然而我们对于多边形的了解

能引导我们了解它们内接于其中的圆。
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图 C-2

在图 C-2中,我们看到一个正多边

形内接于半径为 r 的圆。为了确定这

个多边形的面积,我们从这个圆的圆心

到这个圆上的五个顶点画半径,于是把

这个多边形分成五个三角形。每个三

角形都有长度为 b 的底边, 这是这个

多边形的边, 三角形的高为 h, 这是从

这个圆的圆心到这个多边形的边垂直

画出的虚线,我们称其为边心距。根据著名的三角形面积公式, 我们看

到

每个三角形面积 =
1
2
×底×高 =

1
2
bh

所以

内接多边形面积 = 5×每个三角形面积 = 5×
[
1
2
bh

]
=

[
1
2
h

]
× 5b

而 5b 正是这个多边形的边长的 5 倍, 因此它等于这个多边形的周长。

总之, 我们已经得到

正多边形面积 =
[
1
2
h

]
×周长

经过片刻的沉思,我们就会明白,无论我们在一个圆内内接一个正

5 边形还是正 20 边形或者正 1000 边形, 这个公式都成立。对于一般

的情况, 即在圆内内接一个正 n 边形, 这个多边形被分成 n 个小三角

形, 每个小三角形都有相同的边心距 h(从圆心到多边形的边的垂直距

离) 和底 b(这个 n 边形的边长)。因此,

多边形面积 = n×三角形面积 = n×
[
1
2
bh

]
=

[
1
2
h

]
× nb =

[
1
2
h

]
×周长

因为周长是多边形边长 b 的 n 倍。

现在, 我们想象连续地内接一个正 10 边形、一个正 10 000 边形,

一个正 10 000 000边形等,这样不停地增加边数。很显然,至少在直观

上, 以这种方式, 多边形将逐渐“填满”(fill up) 圆, 希腊人说这是“耗
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尽”(exhaust) 圆, 因此内接图形的面积将接近圆面积, 以圆面积为其

面积的上限。使用记法 lim 表示极限 limit, 我们看到

圆面积 = lim[内接正多边形面积] = lim
[(

1
2
h

)
×周长

]

内接正多边形的面积永远不会与圆的面积精确地相等, 因为无论直边

多么小, 它们都不会精确地与圆弧一致。但是, 这个多边形的面积可以

任意接近这个极限面积, 即这个圆的面积。

还有两个问题：当多边形的边数无限增加时, 边心距和周长有什

么变化呢？显然 h 将以这个圆的半径为其极限值。同样内接正 n 边形

的周长的极限值是这个圆的周长。这些事实可以用符号表示如下：

lim h = r, lim(周长) = C

因此,

圆面积 = lim
[(

1
2
h

)
×周长

]
=

(
1
2
r

)
× C =

rC

2
π 终于露面了, 因为我们注意到上面的 C = πD = 2πr。因此前面

的公式变成：

圆面积 =
rC

2
=

r(2πr)
2

=
2πr2

2
= πr2

毫无疑问,这是数学中一个关键的公式,这个公式不仅令数学家感到兴

奋, 甚至令报纸漫画家感到兴奋 (见图 C-3)。

图 C-3 (FRANK&ERNEST, 得到 NEA, Inc. 的许可翻印)

所以, 如果求一个给定的圆的周长或者面积, 我们就一定会遇到

π。但是这引发了一个实际问题,即要确定这个重要的比率的值。总之,

π 是一个真正的、毫不掺假的数的符号, 任何人要做与圆相关的计算
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时都需要知道这个数 (至少是近似值)。就像只使用单词 egg 不能做蛋

糕一样, 只使用符号 π 也无法求圆面积的数值。

近似比率 C/D 的最简单的方法是量出某个圆的周长和直径, 然

后由前者除以后者。例如, 绕一辆自行车的轮胎一周的一段绳子量出

是 82 英寸, 而同时拉伸另一段绳子测得这个轮胎的直径是 26 英寸。

因此, 我们实际的实验产生的估测是 π = C/D ≈ 82/26 = 3.15 · · · ,
而 ≈ 表示“约等于”, 和前一章的意思一样。遗憾的是, 当我们用

同样的方法去测量一个咖啡罐的圆形盖子的周长和直径时, 我们得到

π = C/D ≈ 18/6 = 3.00, 这个结果并没有非常接近第一次的估测值。

像这类物理测量显然要带来一些误差,无论如何,现实中的咖啡罐和自

行车轮胎都不是完美的数学圆。

为了对周长和直径的比率做一次精确的数学估测, 我们把注意力

转向锡拉库扎的阿基米德 (公元前 287―前 212),这是数学史上一位令

人尊敬的人物。阿基米德是一个有点古怪的人, 心不在焉, 沉迷于自己

的想法, 早在他那个时代, 他就被认为是一位科学天才。不管怎样, 之

所以人们至今仍然纪念他, 可能是因为他识别出了赫农王的王冠。

据传说, 锡拉库扎的这位国王命令一名工匠用一定量的黄金制作

一个精致的王冠。当这项计划完成时, 有流言说这名工匠用一定量的

铝取代了等量的黄金, 因此这个王冠不值钱, 因而欺骗了国王。这个流

言是真的吗？揭示真相的任务被指派给阿基米德。我们引用罗马建筑

师维特鲁威 (Vitruvius) 的一段话来讲述这个故事。

当阿基米德脑子里正在想着这件事时,他不知不觉来到了浴池。当

他跳进浴池里的时候, 发现溢出池子外面的水量等于他浸在水中的身

体的体积。因为这一事实明示了破解这个问题的方法, 他不再耽搁, 而

是兴奋地跑起来, 他跳出池子, 赤裸地跑回了家, 大声地喊他已经找到

了要找的东西。他一边跑一边用希腊语喊到：找到了, 找到了![1]

尽管这个故事的真实性有些可疑,但是它的确是一个著名的故事。

也许在整个科学史中再没有其他传说能把才智与赤裸等要素如此生动

地结合在一起。
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历史学家说阿基米德经常在沙地上画图形来研究他的数学。甚至

传说他经常携带一个沙盘, 就像当时的一种膝上电脑。当灵感涌动的

时候, 他把沙盘放在地上, 然后抹平沙子, 开始画他的几何图形。在今

天看来, 这样的方法显然有它的缺陷：一阵大风就可能把他那杰出的

证明吞掉;一个恶棍也许会把定理踢到他的脸上;一只猫可能会闯入沙

盘, 弄成狼藉一片, 让他无法静心沉思。

然而, 阿基米德成功了, 他创造了数学的主体, 不仅把它留给了他

同时代的人, 而且还一代一代地传承给后来的学者。我们将在第 S 章

接着介绍他,在那里我们将稍微仔细些介绍他的最伟大成果,即确定了

球的表面积。但是这里先讲述他对圆周与直径的比率的估测, 换句话

说, 他对 π 的估测。

同上面的作法一样, 阿基米德的方法是用正多边形逼近圆。尽管

下面的做法启用了现代的符号而且起点稍有不同, 但是整个进程与阿

基米德的方法一致。这个过程只需要一点代数知识和毕达哥拉斯定理。

而毕达哥拉斯定理是说在一个直角三角形中, 其斜边的平方等于其他

两个边的平方和。(毕达哥拉斯定理在第 H 章讨论。)
我们利用图 C-4,有一个圆的内接正方形

ABCD。因为周长和直径的比率对于所有圆

都是相同的,可以把这个圆的半径选为 r = 1,

这使得我们的工作变得相对简单些。因此这

个正方形的对角线, 即图中的虚线是这个圆

的直径, 2r = 2。

我们用 s 表示这个正方形的边长, 于是

直角三角形 ABD有两个边的边长是 s,斜边

是 2。根据毕达哥拉斯定理,它满足 s2 +s2 =
图 C-4

22, 所以 2s2 = 4, s =
√

2。于是这个正方形的周长是 P = 4s = 4
√

2。

这个正方形的周长首先给出了这个圆的周长的一个粗略的估测。

用正方形的周长取代圆的周长, 我们得到

π =
圆周长

直径
≈ 正方形周长

直径
=

4
√

2
2

= 2
√

2 = 2.828 427 125 · · ·
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此时 π的近似值 2.8284误差很大,甚至比上面的自行车的轮胎估测值

更糟糕。如果我们不能比这做得更好,我们就真应该回到制图板,或者

沙盘了。

但是,根据阿基米德的思想,我们可以通过加倍这个多边形的边数

来改进第一次估测, 因此得到一个内接正八边形并设它的周长是这个

圆的周长的下一个估测值。我们再次把边数加倍, 得到一个内接正十

六边形, 然后是正三十二边形, 等等。显然每一步, 我们的估测值都更

精确。同样显然的是, 在我们的方法中, 我们的主要障碍是确定这些多

边形中的一个多边形的周长与下一个多边形周长之间的关系。

图 C-5

再次使用毕达哥拉斯定理就可以

克服这一障碍。图 C-5 给出了圆心是

O 且半径为 r = 1的一个圆的一部分。

长度为 a的线段 AB 是内接正 n边形

的一条边。点D把线段 AB二等分,画

一条通过 D 点的半径, 其与圆相交于

C 点, 我们生成线段 AC, 这是内接正

2n 边形的一条边。如果 b 是 AC 的长

度, 我们希望确定 a 与 b 之间的关系,

即一个内接正多边形的边长与边数是

其边数 2 倍的正多边形的边长之间的

关系。

首先注意到 4ADO是直角三角形,其斜边长为 r = 1,直角边 AD

的长为 (1/2)a。如果 x 代表直角边 OD 的长, 毕达哥拉斯定理保证

12 =
(

1
2
a

)2

+ x2 =
a2

4
+ x2 → x2 = 1− a2

4
→ x =

√
1− a2

4

因为 CD 的长度显然是 OC(半径) 的长度和 OD 的长度之差, 于

是我们得出 CD 的长度是

1− x = 1−
√

1− a2

4
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再次对直角三角形 ADC 运用毕达哥拉斯定理, 得到

b2 =
(

1
2
a

)2

+ (1− x)2 =
a2

4
+ 1− 2x + x2

=
a2

4
+ 1− 2

√
1− a2

4
+ 1− a2

4
= 2− 2

√
1− a2

4

因为 a2/4 项消失了。我们把上面表达式中的 2 从根号外面移到根号

里面就可以化简这个表达式, 于是得到

b2 = 2− 2

√
1− a2

4
= 2−

√
4

(
1− a2

4

)
= 2−

√
4− a2

最后得到

b =
√

2−
√

4− a2

现在, 我们要回到对 π 进行估测的问题上来。回想一下我们的内

接正方形的边长是 s =
√

2。当我们运用上面的公式计算内接正八边形

的边长时, 这个值相当于 a：

b =
√

2−
√

4− a2 =

√
2−

√
4− (

√
2)2 =

√
2−√4− 2 =

√
2−

√
2

因此八边形的周长是 8× b = 8
√

2−√2, 于是我们估测 π 为

π=
圆周长

直径
≈ 正多边形周长

直径
=

8
√

2−√2
2

= 4
√

2−√2 = 3.061 467 459 · · ·

接下来我们要利用 16 边形。这一次 a =
√

2−√2, 这是已经确定

的正八边形的边长, 我们使用它求正 16 边形的边长 b：

b =
√

2−√4− a2 =

√
2−

√
4− (

√
2−√2)2

=

√
2−

√
4− (2−√2) =

√
2−

√
2 +

√
2
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所以 16 边形的周长是

16× b = 16

√
2−

√
2 +

√
2

于是我们对 π 的更好的估测值是

π=
C

D
≈ 正多边形周长

直径
=

16
√

2−
√

2 +
√

2
2

= 8
√

2−
√

2 +
√

2 = 3.121 445 153 · · ·
现在我们取得了某种程度的进展。再次把边数加倍, 并运用这一

公式得到内接正 32 边形的周长是

32

√

2−
√

2 +
√

2 +
√

2

所以 π 的估测值为

π ≈ 正多边形周长
直径

= 16

√

2−
√

2 +
√

2 +
√

2 = 3.136 548 491 · · ·

我们可以继续进行。显然我们可以随意重复这一过程。事实上,这一进

展模式使得从一步到下一步的过渡变得非常顺利。

在计算器的帮助下, 我们再进行七次加倍, 得到了 64 边形、128

边形、256 边形、512 边形、1024 边形、2048 边形以及 4096 边形。显

然正 4096边形已经相当接近圆了,尽管它与自己所内接的圆不完全相

同。这次对 π 的估测是：

π=
C

D
≈ 多边形周长

直径

= 2048

√√√√√√√√√2−

√√√√√√√√2+

√√√√√√√2+

√√√√√√2+

√√√√√2+

√√√√
2+

√
2+

√
2+

√
2+

√
2+
√

2

= 3.141 594 618 · · ·
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上面的表达式已经精确到了小数点后第五位, 它的特殊外形充分

展示了数学的艺术性。更重要的是我们知道了如何得到更精确的估测

值：再继续这样的模式一次,或者一激动再做 50次。以这样的模式,常

数 π 可以达到我们希望的精确度。

使用正多边形的这种基本方法要追溯到 22 个世纪之前的阿基米

德。但是它有一种缺点：需要计算平方根的平方根的平方根。随着每

一次边数的加倍,我们都陷入一次平方根嵌套,因而随之使整个过程变

得复杂。阿基米德当时既没有十进制体系也没有计算器, 他不得不通

过寻求大致等值的小数来压倒这一平方根风暴。他最后用到了 96 边

形。他做到的这一切已经足以证明了他是天才。

然而还有更容易更有效的途径到达同样的终点吗？答案是肯定的,

尽管在 17 世纪微积分和无穷级数发明之前, 这一途径还隐于迷雾之

中。只有有了微积分和无穷级数, 数学家才能真正找到 π 更有效的近

似值。尽管这是一个相当精妙的话题, 但是我们还是希望至少给出一

种冲击这一防线的感觉。

有一个重要的函数,它被称为反正切函数 (记为 tan−1x),出身于三

角学领域,在这里我们不需要考虑三角学。重要的是我们可以把 tan−1x

表示成无穷级数。

tan−1 x = x− x3

3
+

x5

5
− x7

7
+

x9

9
− x11

11
+

x13

13
− · · ·

上面这个求和过程以一种显然的模式无限地进行下去。我们越往前进

行算术运算, 就越接近 tan−1x 的真实值。

但是这与 π 有什么关系呢？使用三角学我们可以证明下面的事

实：

π = 4
[
tan−1 1

2
+ tan−1 1

5
+ tan−1 1

8

]

然后,我们分别把 x = 1/2, x = 1/5, x = 1/8代入到上面所示的级数中

来近似 tan−11/2, tan−11/5, tan−11/8。对每一个级数计算七项得到：

π = 4
[
tan−1 1

2
+ tan−1 1

5
+ tan−1 1

8

]
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≈ 4
[(

1
2
− (1/2)3

3
+

(1/2)5

5
− (1/2)7

7
+

(1/2)9

9
− (1/2)11

11
+

(1/2)13

13

)

+
(

1
5
− (1/5)3

3
+

(1/5)5

5
− (1/5)7

7
+

(1/5)9

9
− (1/5)11

11
+

(1/5)13

13

)

+
(

1
8
− (1/8)3

3
+

(1/8)5

5
− (1/8)7

7
+

(1/8)9

9
− (1/8)11

11
+

(1/8)13

13

)]

= 4(0.785 399 829 · · · ) = 3.141 599 318 · · ·
像我们前面的估测一样,这一估测可以精确到小数点后许多位。然

而前面的估测导入了很多平方根,其每一个都需要自己的估测程序,而

上面的估测却再也见不到平方根的身影！通过引入 tax−1x 的无穷级

数, 数学家可以避开平方根这样可怕的事情。

大约 3 个世纪前取得的这一成果使得在 π 的计算方面取得了巨

大的进步。1948 年 (计算机出现之前), 人们就已经将 π 精确到小数点

后 808 位了。一年后, ENIAC 计算机把这一精度推到了 2037 位 [2]。

而按现在的标准, 这样的计算机绝对是太初级了。这一精度的改进说

明一个事实：计算机可以做 π 的任意位数的计算。的确, 位探索已成

为一小部分人热情追逐的事情,他们致力于一系列数值计算机的研究。

不久, 精度就增加到 10 万位, 100 万位, 以及令人吃惊的 10 亿位。这

样的计算一般都在著名大学或大的研究中心内依赖于强大的超级计算

机完成。

然而, David Chudnovsky 和 Gregory Chudnovsky 这一对聪明却

有点古怪的兄弟却逆潮流而上, 在曼哈顿岛公寓里他们把邮购来的元

器件组装成计算机,计算 π到小数点后 20亿位。他们的工程令桌面放

满了计算机部件,走廊上布满了电线,所有这些电子小部件产生的热量

使得公寓的室温急剧升高。尽管如此, Chudnovsky 兄弟俩人还是努力

完成了这一任务。这兄弟二人的方法与各大学的超级计算机的对比就

相当于他们二人与《圣经》故事中的巨人歌利亚 (Goliath) 的对比, 尽

管此时, 这对处于劣势的兄弟拥有许多小硅棒。[3]

如果说纽约的 Chudnovsky兄弟是成功攻克了 π的一对孤独的狼,

那么古德温 (E. J. Goodwin) 医生的孤军奋战则相当失败。他的故事
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很多数学家都知道, 却常讲常新。

故事发生在 19世纪末。古德温医生生活在印第安纳州的 Solitude,

这是一个偏远且毫无生气的小镇。为了打发他的业余时间, 这位优秀

的医生涉足了数学, 遗憾的是他热情有余而能力不足。他相信自己对

圆的面积及其周长之间的关系做出了重大发现, 事实上这就隐含着关

于 π 的重大发现。

伟大的数学进步应该与学术团体一起分享, 但是古德温医生却采

用了不同的策略。他把他的成果引入到政治舞台而不是学术舞台, 他

要求印第安纳州众议院的代表引入下面的条款作为 1897 年的 246 号

法案：“印第安纳州众议院制定如下法律, 确定圆的面积等于这个圆的

周长的四分之一的平方。”[4] 当然 1897年的政治领导人并不比现代的

政治领导人对数学更内行, 只是因为他们觉得它完全可以接受。但是

这是什么意思呢？

正如图 C-6 所示的那样, 古德温的法案说左边圆的面积等于右边

正方形的面积, 而右边正方形的每条边长正好等于这个圆的四分之一,

即它的周长的四分之一。如果我们用 r 表示这个圆的半径, 而周长表

示为 C = 2πr, 那么我们知道这个圆的面积等于 πr2, 而正方形的面积

等于： (
1
4
C

)2

=
(

1
4
× 2πr

)2

=
(

1
2
πr

)2

=
1
4
π2r2

要像古德温所说的那样, 这两个面积相等, 那么有下式成立：

πr2 =圆面积 =正方形面积 =
1
4
π2r2

交叉相乘后我们得到 4πr2 = π2r2, 消除两边的 πr2, 我们得到最终结

果是 π=4。

也许阿基米德正在他的坟墓里抗议, 但是印第安纳州的立法者们

没有一个人因为这样的结论而感到困惑。对于他们来说, 这些话听起

来太深奥而无法反驳。这一法案有点奇怪地首先由关于沼泽地的委员

会讨论通过。1897年 2月,教育委员会讨论通过。三天后,整个印第安

纳州议会代表投票表决赞同古德温的主张：π=4。
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图 C-6

其间, 这件事引起新闻界的注意,《印第安纳波利斯哨兵》就表明

了对它的支持：

这项法案⋯⋯不是有意欺骗。古德温医生⋯⋯和州教育厅长相信

它是人们长期寻找的解⋯⋯它的作者古德温医生是一位著名的数学

家。他对此拥有版权, 但他提出, 如果众议院认可这个解, 那么他将

允许这个州免费使用这个数。[5]

上段文字除了说明州教育厅长支持这一法案之外, 还给出了下面

这些奇怪举动的一个合适的理由：这些立法人员非常渴望全国人民或

者全世界人民都使用这个新的 π 值, 从而使印第安纳州拥有全国乃至

世界性的荣誉。

246号法案提交到参议院的戒酒委员会,该法案于 2月 12日获得

通过, 就剩下通过参议院全体会议, 并得到法律的身份了。

幸运的是, 在最后关头,这一法案没有通过。它的失败很大程度上

要归功于普度大学的数学家沃尔多 (C. A. Waldo), 他当时正在印第安

纳波利斯。沃尔多回忆了他在参观州议会大厦时所发生的事情, 下面

是别人的回忆：“一名委员向他出示了这个法案的副本⋯⋯并问他是否

愿意认识一下这位博学的医生。他婉言谢绝了这番好意, 并说他已经

认识了足够多的疯子。”[6]

由于这位教授的负面评价, 对于这个法案的支持失败了。2 月 12

日下午,参议院无限期推迟了这一议案,维持 π等于 3.141 59· · · 合法。
一位很有见识的该议案的反对者参议员哈贝尔抱怨说：“参议院还不如

立法让水往山上流。”
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从阿基米德的沙盘到印第安纳州的立法大厅, 圆和 π 激起了人们

的兴趣。在本书后面的章节中我们还会看到它们两个, 因为它们是数

学事业的中心。现在, 我们给出这个世界的伟大数值的前 30 位小数：

π = 3.141 592 653 589 793 238 462 643 383 279 · · ·
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1684年,一篇数学论文出现在《教师学报》上。它的作者是戈特弗

里德�威廉�莱布尼茨, 这是一位兴趣广泛且有无限创造力的德国学

者和外交家。这篇论文里密密麻麻地挤满了拉丁词汇和数学符号, 当

时的读者可能会觉得很难理解。今天看来, 这篇论文的主题的最好线

索就是论文标题末尾出现的一个词：微积分(calculi)。

这是第一次正式出版的微积分著述。它的题目翻译为《一种求极

大值与极小值以及求切线的新方法, 它也适用于有理量与无理量, 还

有这种新方法的奇妙微积分计算》。[1] 而在这里, 微积分一词的意思

是“一组规则”, 在该论文中它是适用于有关极大值、极小值以及切线

等一类问题的一些规则, 莱布尼茨声称这些规则适用于有理数和无理

数。他的发现意义如此重大, 后来微积分一词成为了不朽的数学词汇。

事实上, 数学家想要对这门学问给予特殊的关注时就会把它称为“the

calculus”, 这听起来似乎更令人敬畏。

它是令人敬畏的。在传统的大学本科课程中, 微积分是进入高等

数学的入口 (遗憾的是, 对某些人来说是一种障碍)。它已经成为工程

师、物理学家、化学家、经济学家等各种专业人士的不可或缺的工具。

微积分显然是 17世纪数学的最高成就,很多人认为它是整个数学发展
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史上的最高成就。20世纪最具影响力的数学家之一约翰�冯�诺依曼

(1903―1957)写道：“微积分 (the calculus)是现代数学取得的最高成就,

对它的重要性怎样强调也是不会过分的。”(注意冯�诺依曼提到的是

the calculus。)

莱布尼茨 1684年的论文内容是微分,这是这门学科的两个分支之

一。另外一个分支是积分, 在 1686 年莱布尼茨在相同的期刊上介绍了

它, 它将是我们第 L 章的主题。

在探讨微分之前, 我们应该简单介绍一下它的起源。尽管是莱布

尼茨首先在 17 世纪 80 年代中期公开描述了微积分, 然而, 是艾萨

克�牛顿在 1664 年到 1666 年之间首先研究了这个课题。当时还是剑

桥大学三一学院的学生的牛顿创造了他所谓的“流数”,这也是一组规

则,利用它们他也可以求得极大值、极小值和切线,它们也适用于有理

数和无理数。总之, 他的流数要比莱布尼茨发表的微积分早二十年。

现代学者认为他们二人分别独立发明了微积分。但是当时的数学

家怀疑这是一种剽窃,他们对这一荣誉的分配几乎无法做到有雅量。于

是,英国人坚持认为牛顿优先,而欧洲大陆的数学家们则坚信莱布尼茨

优先, 双方展开了一场激烈的争论。这场争论可以说是数学史上最不

幸的一段插曲, 我们将在第 K 章给予详细描述。

牛顿和莱布尼茨发明的究竟是什么呢？微分学的核心是斜率和切

线的概念,一般在高中的代数课里介绍斜率,而切线则是高中的几何课

程的关键概念。切线出现在莱布尼茨的论文标题中, 但是我们先从斜

率开始讨论。

假设在坐标平面内有一条直线。我们可以分别研究 x坐标和 y 坐

标, 但是研究 x 和 y 是如何连带变化的通常更有益。例如, 如果 x 增

加 4 个单位, 那么相应的 y 的值如何变化呢？

能够想到的是这个答案与问题中的直线的坡度有关。在图 D-1中,

左边的直线逐渐上升, 所以 x 坐标增加 4 个单位 (即水平轴上增加 4

个单位) 导致 y 坐标产生较小的变化 (即垂直变化非常小)。但是对于

右边倾斜较大的直线来说, x增加 4个单位则导致 y产生较大的上升。
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图 D-1

为了用数学语言描述这一概念, 我们定义直线的斜率为：

斜率 =
y的改变量

x的改变量
=
上升

平移

如果一条直线的斜率是 2/5,那么当 x增加 5个单位时, y 会增加 2个

单位, 缓缓上升。而如果斜率是 5/2, 则表明当 x 增加 2 个单位时, y

整整增加 5 个单位, 此时攀升速度相当快。如果要求我们把一架钢琴

拉上一个斜坡, 我们希望这个斜率是 2/5 而不是 5/2。

图 D-2

表示斜率的符号通常是 m, 如图 D-2 所示

的那样, 通过点 (x1, y1) 和点 (x2, y2) 的直线的

斜率定义是

m =
y的改变量

x的改变量
=

y2 − y1

x2 − x1

对于一条斜率为 5/2的直线,水平方向增加

2 个单位导致垂直方向上升 5 个单位。因此, 如

果 x 增加 3×2=6 个单位, 那么 y 则相应地增加

3×5=15 个单位。同样 (这是解释斜率的关键),x

向右增加一个单位将导致 y 增加 5/2=2.5 个单

位。对于斜率是 2/5的直线来说, x增加一个单位则导致 y增加 2/5=0.4

个单位。因此, 我们可以把直线的斜率看成是 x 每单位改变量引发的

y 的改变量。即斜率告诉我们当 x 增加 1 时, y 增加多少。

所有这一切似乎没有什么现实意义,但是事实并非如此。例如,假
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设我们正在考虑一架飞机的运动, 其中 x 代表这架飞机在高空飞行的

时间, y 是它在 x 小时内飞行的距离。假设 x − y 关系的图像是一条

直线, 我们把这条直线的斜率解释为单位时间变化 (x 的变化) 所对应

的距离的变化 (y 的变化), 即这个斜率代表飞机的速率(用每小时的英

里数来衡量)。这个速率对飞行员来说非常重要,这一点是无可否认的。

这一切都与斜率这样一个抽象的数学概念密切相关, 说明这种思想在

纯数学领域之外是何等重要。

下面再考虑一个经济学问题。我们考虑与某个制造过程相关的两

个变量：x是生产出的产品数量, y 是销售 x件产品后产生的利润。如

果 x − y 关系的图像是一条直线, 那么我们把这条直线的斜率解释为

对应于单位销售量的变化而产生的利润变化, 即每增加一件产品销售

所增加的效益。经济学家对这个概念是如此倾心, 致使他们给它起了

一个特殊的名字, 边际利润, 它的值可以决定大型产业的发展过程。

生活中有很多斜率的例子。像每加仑英里数、每秒英尺数或每磅

价格这样的度量, 表明斜率就在我们的身边。毫无疑问, 一些最重要的

数学应用只要涉及一个量相对另外一个量的变化比率, 就会体现了斜

率的思想。

对于我们刚才的例子, x增加一个单位导致 y 有一个相应的增加。

从图上看, 这表明当我们向右移动时, 这条直线是向上攀升的。但是并

不是所有线性关系都是这一类型。显然我们可能遇到这样的例子, x增

加导致 y 减少。还用飞机的例子, 我们可以设 x 是飞机在空中飞行的

时间, y 是飞机与其目的地的距离。于是,当 x增加时, y 就会减少。这

种情况可以用图 D-3 左图的直线说明, 对于这条直线, 当 x 增加 2 时,

y 减少 5。这里

m =
y的改变量

x的改变量
=
−5
2

= −2.5

还有最后一种情况, 对于微分学非常重要, 它是如图 D-3 右图所

示的水平线。在这里, x的增加不会导致 y 的增加或者减少,因为 y 没

有变化。于是

图灵社区会员 cindy282694 专享 尊重版权



46 数学那些事儿：思想、发现、人物和历史

m =
y的改变量

x的改变量
=

0
x的改变量

= 0

图 D-3

总之,上升直线有正斜率,下降直线有负斜率,水平直线有零斜率,

它是上升直线与下降直线的分界线, 其斜率也是正负的分界线。它们

步调一致。

遗憾的是,这一理论只适用于直线,因为整个直线显示出相同的倾

斜度,即有相同的斜率。在数学中直线当然非常重要,但是显然现实世

界的很多现象显现出多变的非线性的性质。飞机不可能以某个固定的

速度飞行, 生产过程也不可能呈现出不变的边际利润。总之,我们如何

确定曲线的斜率呢？要描述这个问题, 我们最终要进入微分学领域。

为了说明这一问题, 我们考虑图 D-4 所示的抛物线 y = x2 − 4x+

7 的图像。当 x = 3 时, 我们发现 y = 32 − 4 × 3 + 7 = 4, 并在这条曲

线上标出这个点 (3, 4) 为 A。

显然整个抛物线没有固定的斜率。当我们沿着这条曲线移动时,要

不断地改变方向, 从左边进入, 开始下降, 然后在底部趋于水平, 然后

向右上升。基本原理很显然：曲线不同于直线, 它每一点的斜率都不

同。

那么如何确定这条曲线在点 A 的斜率呢？从图上看, 在点 A 画

出这个抛物线的切线,并把抛物线 (曲线)的斜率看成是在这点的切线
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(直线) 的斜率似乎比较合理。下面的情景给出了这种方法的合理性。
假设我们沿着这条抛物线路径开

一辆小车。我们先从左边往下开,再水

平移动,然后向右往上爬,越向上越陡。

当我们正好到达点 (3, 4)时,我们突然

飞出这辆车,在车子继续沿着抛物线向

上运行的同时, 我们则沿直线前进 (如

图 D-4 所示的箭头方向)。因此, 我们

的飞行直线是这条曲线在点 (3, 4) 处

的切线,这条切线的斜率就是我们所说

的抛物线在点 A 处的斜率。

这就简单多了。但如何求这条切

线的斜率还不是很显然。在探讨解决

方案之前,我们应该明示其中存在的困
图 D-4

难。因为斜率定义为

m =
y2 − y1

x2 − x1

因此需要直线上的两个点来计算。然而在上面的例子中, 我们只知道

这条切线上的一个点,即点 A = (3, 4)自己。如果我们还知道这条切线

上的另外一个点, 那么很快就可以求得它的斜率。没有这样的信息,我

们就好像进入了死胡同,但是微分学给出了绕过这一障碍的方法,那就

是间接地逼近这条切线的斜率。这是一条绝妙的进攻路线。

对于我们的问题, 我们要求的是这条曲线在 x = 3 处的斜率, 首

先我们考虑在 x = 4 时的情况。此时, 没有办法知道对应于 x = 4

的这条切线上的点, 但是我们可以确定 x = 4 时抛物线上的点, 此时

y = 42 − 4 × 4 + 7 = 7。我们在图 D-5 上标出这个点 (4,7) 为 B, 图

D-5 给出了这条曲线这个关键部分的放大图。于是很容易求得通过点

A 和点 B 的直线的斜率, 我们称这条直线为连接 A 和 B 的割线：

m =
y2 − y1

x2 − x1
=

7− 4
4− 3

=
3
1

= 3
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这是一个非常简单的计算, 遗憾的是, 它不是切线自身的斜率, 而是那

条割线的斜率,只能作为一个粗略的近似。我们如何改进这个估测呢？

图 D-5

为什么不在这条抛物线上选出一个比 B 更靠近 A 的点呢？比如

说设 x = 3.5。相应的 y 值是 3.52 − 4 × 3.5 + 7 = 5.25, 所以抛物线上

有坐标为 (3.5, 5.25) 的点 C。连接 A 和 C 的割线有斜率

m =
y2 − y1

x2 − x1
=

5.25− 4
3.5− 3

=
1.25
0.5

= 2.50

如果你想象在图 D-5 上在点 A 和 C 之间画一条直线, 它显然比我们

第一次尝试的 A 和 B 之间的直线更加接近切线。于是 2.50 的斜率比

我们第一个估测值 3.0 更加接近切线的斜率。

下一步应该是可以预测的：在抛物线上取一个更加接近点 A 的

点。例如设 x = 3.10, 于是 y = 3.102 − 4× 3.10 + 7 = 4.21, 令 D 是点

(3.10, 4.21)。连接点 A 和 D 的割线显然更加接近要求的切线, 它的斜

率是

m =
y2 − y1

x2 − x1
=

4.21− 4
3.10− 3

=
0.21
0.10

= 2.10

继续照这样进行, 设我们的点沿着抛物线向 A 移动, 并计算我们

行驶过程中相应的割线的斜率。这样的一连串计算出现在下面的表格

里。
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抛物线上的点 相连这个点与点 A 的割线的斜率

(4.0, 7) 3.0

(3.5, 5.25) 2.5

(3.10, 4.21) 2.10

(3.01, 4.0201) 2.01

(3.0001, 4.000 200 01) 2.0001

...
...

有一个显然的模式。当我们的点沿抛物线向 A = (3, 4)移动时,对

应的割线也旋转着更加靠近这条切线, 它们的斜率显然逐渐逼近无法

求得的切线斜率的更精确的估测值。在我们的例子中, 我们能够很快

地猜测出问题中的切线斜率是这些割线斜率无限靠近的那个数：抛物

线 y = x2 − 4x + 7 在点 (3,4) 处的切线的斜率显然是 2。

至此, 一切都很完美。但是, 如果我们要求同一抛物线在点 (1,4)

处的斜率又如何是好呢？我们或许不得不进行类似的计算并准备一张

类似的表格。如果给我们另外十多个点, 需要求得在这些点处的切线

斜率,那又如何是好呢？我们可能要面对十多张表格,而且整个操作将

变得非常乏味。能够改善这种计算斜率的过程吗？

答案是肯定的。事实上, 这就是莱布尼茨在 1684 年的那篇论文中

描述的规则所实现的目标。这种改善要求我们稍微采用更抽象的观点,

也就是说更代数的观点。现在我们不再关注特定的点 (3,4), 而是要发

明一个求抛物线 y = ax2 + bx + c 上任意点 P 处的切线的斜率公式。

设 P 有坐标 (x, y), 且 y = ax2 + bx + c。同上, 选择一个靠近点

(x, y) 的点, 使用割线的斜率近似切线的斜率。

如图 D-6 所示, 习惯上把这个“邻近”点的第一坐标记为 x + h。

之所以这样做, 是因为我们认为 h 是非常小的一般量, 是一个只超出

x 一点点的小增量。抛物线上相应的点被标为图中的 Q 点。为了求它

的第二坐标,我们只需把 x+h代入抛物线的方程,即用 x+h代替 x。

这样的代入给出 Q 的第二坐标是

a(x + h)2 + b(x + h) + c =a(x2 + 2xh + h2) + b(x + h) + c

=ax2 + 2axh + ah2 + bx + bh + c
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图 D-6

所以 Q 点是 (x + h, ax2 + 2axh + ah2 + bx + bh + c)。读者会注意到这

个问题的代数强度已经上升了一两个等级, 但是为了寻找一个一般公

式, 这样的努力还是值得的。

下一步是使用求 m 的公式确定过点 P 和 Q 的割线的斜率：

m=
y2 − y1

x2 − x1
=

(ax2 + 2axh + ah2 + bx + bh + c)− (ax2 + bx + c)
(x + h)− x

=
ax2 + 2axh + ah2 + bx + bh + c− ax2 − bx− c

x + h− x

=
2axh + ah2 + bh

h
(合并分子分母的同类项后)

=
h(2ax + ah + b)

h
(提出分子的因子 h)

= 2ax + ah + b (消掉 h)

总之, 对于任意的小增量 h, 过点 P 和 Q 的割线的斜率是 2ax +

ah + b。但是沿着抛物线向 P 点“滑动”Q 的想法只是相当于让 h 更

加接近零。换句话说, 在确定这条切线的准确斜率时, 我们只需要取当

h 趋近于零时这条割线斜率的极限就可以了。因此, 对于我们的例子,

切线的斜率是由下面的极限给出的：

lim
h→0

(2ax + ah + b) = 2ax + a(0) + b = 2ax + b

因为当 h 向零靠近时, a, b, x 都保持不变。(符号 lim
h→0
读作“当 h 趋
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近于零时的极限”。)

顺便提醒读者注意,我们可以对前面例子中引用的抛物线 y = x2−
4x + 7 运用这个一般的公式。此时 a = 1, b = −4, c = 7。因此, 在点

A(其中 x = 3) 处切线的斜率是 2ax + b = 2 × 1 × 3 + (−4) = 2, 这和

我们的表格给出的答案相同。如果我们要求点 (1,4) 处的切线的斜率,

我们只需设 x = 1, 于是斜率是 2× 1× 1− 4 = −2。图像证实了这条抛

物线在这一点处是下降的, 与负斜率吻合。

重述：曲线的切线斜率是当 h 趋近于零时相应割线斜率的极限。

这个极限称为导数,求导数的过程称为微分,研究这些相关问题的数学

分支称为微分学。

微分学的目标之一就是发展更一般的公式。我们肯定不想局限于

处理抛物线。使用与上面的过程类似的过程, 数学家从一般函数 y =

f(x) 开始, 求其上任意点 (x, y) 处的切线的斜率。同上, 我们在这条

曲线上选择一个邻近点, 它的第一坐标是 x + h, 第二坐标则相应是

f(x + h)；接下来, 确定割线的斜率：

m =
y2 − y1

x2 − x1
=

f(x + h)− f(x)
(x + h)− x

=
f(x + h)− f(x)

h

最后求当 h → 0 时, 上面这个商的极限值。

莱布尼茨把导数记为 dy/dx。后来约瑟夫�路易�拉格朗日 (1736–

1813) 引入更强大的记法, 他使用符号 f ′(x) 表示 f(x) 的导数。利用

这一记法, 我们可以得到一个在所有微分学书籍中都可以找到的基本

公式：

f ′(x) = lim
h→0

f(x + h)− f(x)
h

从这个一般定义开始, 我们可以给出许多函数的导数。当微分 x

的幂函数,即求形如 xn 的函数的导数时,一个非常优美的模式出现了,

即

若f(x) = xn, 则 f ′(x) = nxn−1

用语言描述的话, 它说的是求 xn 的导数只需要把指数拿下来在前面

当系数, 然后把幂降低一次。因此, x5 的导数是 5x4, 而 x19 的导数是
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19x18。这是一个奇特又奇妙的规则。曲线的性质及其切线的性质就蕴

藏在数学中, 它们可以翻译成如此简单的东西, 真是巧夺天工!

在此我们要说明关于导数定义的几点注意事项。首先, 尽管有些

函数的导数很容易从相关代数获得, 但是有很多函数的导数公式却导

致数学上的混乱。更糟糕的是, 对于某些函数来说, 它在一个点或几个

点处甚至没有导数。对于这样的函数来说, 我们无法对有问题的点指

定任意数作为这条曲线在该点处的切线的斜率。

图 D-7

图D-7给出了一个这样的例子。在

点 (2,1) 处, 这个图像有一个尖角。没

有办法画出这条曲线在点 (2,1) 处的

唯一一条切线,因为在这里它突然改变

了方向。但是,如果我们不能画出一条

切线,那么当然也就无法确定切线的斜

率,而斜率才是它的导数的意义。这个

函数以及其他有锯齿状图像的函数在

尖角处都没有导数。

我们的例子说明, 伴随导数可能
会出现不好处理的难题。这些通常涉及“极限”这个概念, 这是从古时

候起数学家就以不同形式与之纠缠的一种思想。极限的理论意义非常

重大, 依赖它我们定义了导数。在此我们没有必要谈及和深究这个概

念的哲学意义。我们说, 莱布尼茨也没有这样做。他很高兴地从“求极

大值和极小值以及求切线的新方法”中寻求更直接的效益, 而不过度

担心它们的理论基础。

我们已经花了很长时间讨论切线。在本章的最后我们讨论一下微

分在极大值和极小值中的应用。

首先, 我们要强调, 知道一个函数能达到多大或多小, 或者换句话

说,知道一个函数的极大值或极小值,在数学理论和应用两方面都是非

常重要的。在什么样的条件下, 我们可以极大化我们的利润, 极小化汽

油的消耗？极值问题是在现实世界中左右我们做出各种决定的关键。
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微分学为回答这些问题提供了工具, 这一事实充分说明了它的威力。

来看一下它是如何工作的。考虑图

D-8所示的一般函数 y = f(x)的图像。

这个例子显然不是线性的,因为当 x向

右移动时, 它时而上升时而下降, 而且

对于其上的两个点要格外注意。这两

个点是 M 和 N , 其中 M 是这条曲线

能够达到的极大值, 而 N 是这条曲线

达到的极小值。确定 M 和 N 的坐标

当然是非常有意义的。
图 D-8

但是如何确定呢？求极大值和极小值的关键是我们前面讨论的斜

率：在小山的顶部或狭谷的底部,曲线的切线是水平的, 即是一条水平

直线,正如我们前面所说的那样, 它的斜率是零。因此求极大值和极小

值就导致我们去寻找一些特殊点, 满足曲线在这些点处的切线的斜率

是零, 即在这些点导数等于零。用代数语言表示, 我们的任务就是求解

方程 f ′(x) = 0, 然后我们就可以求函数的极值。

作为一个例子,看一下意大利数学家吉罗拉莫�卡尔达诺 (1501―

1576)的一个论断,我们将在第 Z章中从不同的背景再次讨论此人。在

考虑一个代数问题时, 卡尔达诺断言不存在两个实数满足其和等于 10

且其积等于 40。利用微分学, 我们很容易证明他的结论。

那就是,设这两个实数之一是 x,另一个是 z。它们的和等于 10可

以翻译成方程 x + z = 10, 根据这个方程, 我们很快就可以得到 z =

10− x。我们希望确定积 xz 如何变大。显然 xz = x(10− x), 所以我们

引入乘积函数

f(x) = xz = x(10− x) = −x2 + 10x

并且运用微积分来求极大值。

我们已经求得一般二次函数 f(x) = ax2 + bx+ c的导数是 f ′(x) =

2ax + b, 因此, 函数 f(x) = −x2 + 10x 的导数是 f ′(x) = −2x + 10(因

为 a = −1, b = 10, c = 0)。为了求极大积, 我们只求曲线有水平切线
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的那些 x 值。因此我们设 f ′(x) = 0。求解相应的导数方程得 x：

0 =切线的斜率 = f ′(x) = −2x + 10 → 2x = 10, 故 x = 5

图 D-9

图 D-9 所示的这个乘积函数

f(x) = −x2 + 10x 的图像支持这

个结论, 因为这条抛物线的顶点是

x = 5。此时 x和 z 的乘积是 f(x) =

xz = 5(10 − 5) = 25, 这就是这个积

所能取到的极大值。换句话说,和等

于 10的两个实数有极大积 25。卡尔

达诺说不存在这样的两个实数, 它

们的乘积等于 40,显然他是正确的。

前面这几个例子已使我们领略

了微分学的风范, 但是这只是微分

学的表面。这门学科能够解决很多

令人困惑的问题, 因此在后面的章

节中我们会屡次遇到它, 并不会令

人惊讶。但是现在我们要暂时告别这个话题, 离开这个非常重要的数

学概念, 离开莱布尼茨在 3 个世纪之前热情描述的“一种奇妙的微积

分”的这个话题。
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在前面几章中,我们已经遇到了几位数学超级明星：欧几里得、伯

努利以及阿基米德。本章介绍历史上最伟大的数学家之一莱昂哈德�邮

电 欧拉 (他的名字的韵脚是 boiler, 而不是 ruler)。欧拉是一名非常多产

的数学家, 他构建了数学的主体, 他那厚厚的手稿简直令人无法相信。

但是他令后人喜爱的不只是这如此多的著作, 而更是它们的丰富、优

美和敏锐的洞察力。

短短的一个章节甚至无法开始展示欧拉的遗产。现代数学家只需

要发表一打 (或更少) 中等 (或更低) 水平的出版物就能够赢得相当的

名声, 而欧拉写作了几乎 900 种专著、书籍和论文。当欧拉生命终结

时, 他的作品在数量上和质量上都远远超过许多数学家几生几世的作

品的总和。有人估测在他有生之年的六十年间, 他每年平均发表新数

学内容 800 多页。[1] 在整个历史中, 没有哪位数学家能够如此之快地

思考, 即便能够如此,很多人也不能够如此之快地把它们写出来。毫无

疑问, 欧拉所拥有的智慧、敏锐和创造力是古往今来只有少数几名数

学家可以比拟的。像米开朗基罗或者爱因斯坦一样,他是绝对的大师。

从 1911 年开始, 学者们开始把欧拉的著作汇集成册, 标题是《全

集》。这一最具野心的出版计划竟然启动了。到此为止, 总计有 70 多
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卷上架 (谁在计数呢？), 而且直到 21 世纪, 还不断有新的著作陆续出

现。一本典型的著作有 500 多页, 大约重 4 磅, 他的《全集》的总重量

超过 300 磅！没有哪位数学家能比得上这个磅数。

所以,欧拉是一位多产的数学家。而且他的兴趣极其广泛。除了在

已经建立起来的科目, 如数论、微积分、代数和几何等领域有建树之

外, 他还几乎独立创立了新的数学分支, 如图论、变分法、组合拓扑。

他在确立复数的合法地位以及如今几近统一整个数学的函数思想的合

法地位的过程中都起到了非常重要的作用, 关于复数我们将在第 Z 章

中讨论。

在应用数学领域欧拉也非常出色。他利用他强大的数学武器处理

力学问题、光学问题、电学问题以及声学问题,并因此解释了许多自然

现象,从月球的运动到热量的流动到基本的音乐结构 (然而,说到音乐,

据说欧拉的著作中包含太多音乐家的几何和太多几何学家的音乐)。[2]

《全集》的多半部分涉及的都是应用。

我们说欧拉还是一位技艺高超的解说员,这一点很重要,因为他对

某些记法或术语的选择不久都成为该科目的标准。因此他的数学著作

“看起来”很时髦, 因为所有追随他的人都像欧拉那样书写数学。在他

的文献中, 最受人尊敬的是 1748 年的《无穷分析引论》。数学史学家

卡尔�博耶 (Carl Boyer) 写道：

这本书可能是最具影响力的现代教科书。正是这一著作使函数概

念成为了数学的基础。它普及了对数的指数定义以及三角函数的比率

定义。它明确了代数函数和超越函数之间的差异以及初等函数和高等

函数之间的差异。它开发了极坐标的使用和曲线的参数表示的使用。

现在很多我们习以为常的记法都来自于它。一句话,《无穷分析引论》

为初等分析所做的一切就如同欧几里得的《几何原本》为几何所做的

一切一样。[3]

正如数学家高斯在描述他第一次接触欧拉著作时回忆的那样, 它

使他变得“带着饱满的激情而跃跃欲试”,“备受鼓舞, 立志一定要把

这门广泛的学科推向前进”。[4]

图灵社区会员 cindy282694 专享 尊重版权



E 欧拉 57

这里所展示的欧拉肖像值得记住。如果有人要雕刻数学的拉什莫

尔山, 那么欧拉肖像将占据非常显眼的位置。

欧拉《全集》封一

(理海大学图书馆惠允)

1707 年欧拉出生于瑞士的巴塞尔。在青少年时期, 他曾经跟随雅

各布�伯努利学习,当时伯努利被认为是世界上最伟大的数学家之一。

毫无疑问, 这对欧拉是非常有利的, 即使他不得不应付伯努利那令人
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讨厌的个性。(你可以想象, 这位脾气暴躁的雅各布与欧拉相处了一个

学期后, 他没完没了地唠叨着老师的口头禅：“这些学生真不如过去的

好。”)

但是约翰�伯努利没有理由抱怨, 因为几乎没有老师曾经有过这

样的学生。欧拉在 15 岁的时候就完成了本科的学习。四年后, 他因

获得巴黎科学院颁发的奖项而首次赢得了国际声誉。这个科学院公布

了一个挑战性问题, 即确定帆船上桅杆的最佳位置, 欧拉的解决方案

得到了充分的肯定。人们常说, 尽管人们都知道瑞士航海业不够强大,

但是瑞士的欧拉得了奖。因此, 这种强大是数学的强大而不是航海的

强大。

莱昂哈德�欧拉

(理海大学图书馆惠允)
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1727年, 年仅 20岁的欧拉到俄罗斯旅行, 继而在刚刚建立的圣彼

得堡科学院谋求了一个席位。他在那里一直生活到 1741 年, 当时腓特

烈大帝的柏林科学院提供了一个更加诱人的机会。大约有四分之一个

世纪欧拉都在德国的这所科学院工作, 因此在那里他遇到像达朗贝尔

(d’Alembert)、莫佩尔蒂 (Maupertuis)、伏尔泰 (Voltaire)等一些名人。

后来在 1766 年, 他永居于圣彼得堡。在 1783 年于那里去世前, 76 岁

高龄的欧拉在科学领域依然很活跃。

人们都说,欧拉是一个温和而且谦逊的人,一个重视家庭生活并很

容易交朋友的人。尽管他遭受着从 1735 年初开始视力渐失以及 1771

年最终完全失明所带来的痛苦, 但是好脾气仍然保持着。更了不起的

是, 这些困难既没有侵蚀他的精神也没有阻止他的研究。他仍然坚持

着, 即使这意味着他只能通过口述把他大脑中的眼睛所能看到的公式

或者方程讲述给笔记员。他的数学发现的记录表明, 失明没有成为他

生产能力的障碍,直到今天,他在逆境中取得的成就依然是一笔不朽的

遗产。

想用几页纸概括欧拉的数学发现是非常荒谬的。我们只描述他对

几个数学分支的贡献, 而希望读者能够从这不到万一的成果领略到他

工作领域之广。

我们一开始在第 A章就讨论了高级算术, 所以我们首先谈一下欧

拉对数论的贡献。这是当时欧拉没有立即投入的数学分支, 但是他一

旦冒险尝试就入迷了。他的《全集》中有四卷大约 1700 页是他的数论

文章。

他的发现之一是亲和数, 这是可以追溯到古代的一个概念。是希

腊人定义亲和数的,对于两个整数,如果任一个整数是另外一个整数的

真因子之和, 那么希腊人定义这两个整数是亲和的。例如 220 和 284

就是亲和的。也就是说, 220 的因子是 1, 2, 4, 5, 10, 11, 20, 22, 44, 55,

110 和 220。去掉最后一个因子, 我们发现 220 的真因子的和是

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

另一方面, 把 284 的真因子加起来, 我们得到
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1 + 2 + 4 + 71 + 142 = 220

因此, 220 和 284 是一对亲和数。

很多世纪以来, 这是所知道的唯一一对亲和数的例子。下一个突

破是由 13 世纪阿拉伯数学家伊本�阿�巴纳 (ibn al-Banna) 完成的,

他发现了一对相当复杂的亲和数, 即 17 296 和 18 416。[5] 1636 年, 法

国数学家皮埃尔�德�费马 (我们下一章的话题) 重新发现了阿�巴

纳数, 而且他本人对此成就感到相当满意。但是 1638 年, 似乎感觉到

某种不亲和, 他可怕的对手勒内�笛卡儿 (1596―1650) 夸耀说他已经

发现了更大的一对亲和数 9 363 584和 9 437 056。用今天的行话说,笛

卡儿向费马传递的信息是“你行吗！”

此后, 直到 18 世纪莱昂哈德�欧拉出现之前, 一直都没有什么进

展。到此, 我们只知道三组亲和数：希腊人亲和数、巴纳亲和数和笛卡

儿亲和数。欧拉憋足了气, 开始工作, 一下子拿下另外将近 60 对的亲

和数。你行吗, 笛卡儿！

显然,欧拉所做的是发现至今没有被发现的某种模式,这使得他能

够生成如此之多的亲和数。莱昂哈德�欧拉能够审视一个陈年老问题,

并能够看到前几代最智慧的大脑所没有看到的某种东西。

在初等几何领域, 情况也是如此, 这是一个已经得到较充分开发

的领域,因此你不再期望它有什么惊喜。但是欧拉还是发现了某种新东

西。事实上, 欧拉的《全集》有四大卷大约 1600 页都奉献给了几何学。

为了了解欧拉在几何方面的工作, 我们从如图 E-1 所示的任意三

角形 ABC 开始。二等分每条边, 并且画出这个三角形的三条高, 即从

每一个顶点向对边作垂线。在这个图形中,我们用 M 标记每条边的中

点, 用 P 标记每条垂线的垂足。这六个貌似不相关的点有什么值得注

意的东西吗？

欧拉证明了一个非常好的结果：这六个点在同一个圆上！[6] 这个

圆的圆心如图 E-2所示。设 D 是这个三角形三条高的交点 (通常称其

为这个三角形的重心), 而 E 是这个三角形三条边的垂直平分线的交

点 (称其为外心)。画出连接 D 和 E 的线段, 点 O 平分这条线段。于
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是点 O 是经过上面所做出的六个点的圆的圆心。[7] 几千年来, 欧几里

得、阿基米德、托勒密 (Ptolemy) 以及其他人都没有注意到这个极其

特殊的定理, 这表明了在几何学研究方面欧拉能够比他们任何人做得

都好。

图 E-1 图 E-2

那么微积分呢？欧拉对这门学科有贡献吗？这个问题的答案显然

是肯定的。首先,他撰写了微分学和积分学教程,大约占据他的《全集》

的 10∼13卷的 2200页。这些讲解把微积分教给了几代数学家,而且至

今仍对这门学科产生着深远的影响。今天, 那些抱怨自己的 6 磅重的

微积分课本又大又重的学生们, 应该庆幸没有去学习欧拉的这本教科

书, 共有四大卷的这本教科书足足可以装满一个小型旅行箱。

在这一舞台上, 欧拉的早期成果之一是特殊无穷级数求和。一个

世纪前的一个未解问题是估算级数

1 +
1
4

+
1
9

+
1
16

+
1
25

+
1
36

+
1
49

+ · · ·+ 1
k2

+ · · ·
即求所有整数的平方的倒数之和。

有一段时间,数学家们知道这个级数能够累加到 (数学家称为“收

敛到”) 一个有限的和。但是, 这是一个什么样的和呢？甚至是微积分

的创始人莱布尼茨也没有计算出来。伯努利兄弟也同样没有计算出来。

雅各布�伯努利和约翰�伯努利研究过这个问题, 不仅是因为这个问

题本身很有意思, 而且也可能是因为要增加吹牛的资本。想象一下, 因
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为解决了如此困难的著名问题,雅各布会怎样羞辱约翰, 或者反过来。

但是, 直到 1734 年莱昂哈德�欧拉开始关注这个级数之前, 这个

问题都没有取得什么进展。最初,他也被难住了。他做了一个非常繁琐

的计算证明这个级数的和的近似值是 1.6449, 但是这显然不是一个令

人认可的数。欧拉险些加入了伯努利和莱布尼茨这一优秀的团队, 接

受失败, 但是, 用他自己的话说,“根据求圆面积的方法⋯⋯我不小心

发现了一个美妙绝伦的公式。”[8]

他的意思是他的解决方案转向了三角学和微积分, 需要圆常数 π。

凭借才智和大胆, 欧拉证明了

1 +
1
4

+
1
9

+
1
16

+
1
25

+
1
36

+
1
49

+ · · · = π2

6
尽管我们建议读者看一下本章的注释来了解它的详细证明, 但是说这

个级数的和是
π2

6
足以吓到每一个人。[9] 因为解决了一度难倒他的许

多先辈的一道难题, 欧拉让欧洲数学界注意到：一颗新星已经升起。

关于欧拉的数学成就还有很多可说的。但是在本章剩余部分, 我

们只想较详细地给出 1740 年诞生的一个定理。这个例子就如同巨大

的欧拉数学表中的一粒面包屑, 我们以它为代表说明他典型的研究能

力。

法国数学家菲利普�诺德 (Philippe Naudé) 在一封信中向欧拉提

出了所述的问题。在 1740 年的秋天, 诺德开始探究有多少种方法把一

个正整数写成不同正整数之和。这件事引起了欧拉的兴趣。几天内他

寄出了答案,并附带因“几周以来一直遭受视力不好的困扰”而耽搁的

道歉。[10]

在研究欧拉的证明之前, 我们应该先快速了解一下把整数转化成

整数之和的分解。比如说考虑 n=6。下面有 4 种方法把 6 写成不同整

数之和：
6, 5 + 1, 4 + 2, 3 + 2 + 1

(这里我们认为 6 本身也是 6 的和的一种表示。) 当然, 分解 6 = 3 + 3

是不允许的, 因为被加数必须是不同的。还要注意, 我们没有限制被加
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数的个数：我们可以有一个、两个或者更多个被加数,只要它们不同且

加起来等于 6 就可以。引入一个记法, 用 D(n) 表示把 n 写成不同整

数之和的方法数, 我们已说明 D(6)=4。

现在我们考虑把 6 写成奇数之和的方法, 此时我们不再要求这些

被加数是不同的。稍稍尝试一下, 我们就可以得到下面的结果：

5 + 1, 3 + 3, 3 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1

注意这里允许有重复,但是此时我们限定被加数为奇数。设 O(n)是把

整数 n写成奇数 (不一定是不同的)之和的方法数,我们看到 O(6)=4。

把 6写成不同整数之和的方法数与把它写成奇数之和的方法数相

等只是一种偶然吗？显然下一步的做法就是对不同的整数重复上面的

过程。类似于这样的实践在数学家中是非常普遍的, 他们就像化学家

在尝试着给出一般公式并证明一般规律之前通过一些特殊情况做实验

而得到某种有价值的预见一样。当然与化学家不同, 数学家不必担心

他们的实验会爆炸。

取 n=13 看一下。有 18 种方法把 13 写成不同的整数之和：

13 8 + 4 + 1
12 + 1 8 + 3 + 2
11 + 2 7 + 5 + 1
10 + 3 7 + 4 + 2
9 + 4 7 + 3 + 2 + 1
8 + 5 6 + 5 + 2
7 + 6 6 + 4 + 3

10 + 2 + 1 6 + 4 + 2 + 1
9 + 3 + 1 5 + 4 + 3 + 1

用我们的记法, D(13)=18。类似地,下面是把 13写成奇数之和的方法：

13 5 + 5 + 1 + 1 + 1

11 + 1 + 1 5 + 3 + 3 + 1 + 1

9 + 3 + 1 5 + 3 + 1 + 1 + 1 + 1 + 1

9 + 1 + 1 + 1 + 1 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

7 + 5 + 1 3 + 3 + 3 + 3 + 1
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7 + 3 + 3 3+ 3+ 3+ 1+ 1+1 +1

7 + 3 + 1 + 1 + 1 3 + 3 + 1 + 1 + 1+1+1+ 1+ 1

7 + 1 + 1 + 1 + 1 + 1 + 1 3+ 1+ 1+ 1+ 1+ 1+ 1+1+1+1+1

5+5+3 1+1+1+1+1+1+1+1+1+1+1+1+1

于是有 O(13)=18。这提示我们可能发现了某些东西。

不难想象拥有天才计算能力的欧拉会做更多的尝试。每一次实验

都产生令人吃惊的相同的结果：能够用完全相同数量的方法把一个整

数分解成不同整数之和和分解成奇数之和。

欧拉注意到了这种现象, 而且他注意到了更多的东西：只用了一

个巧妙的方法, 欧拉证明了D(n) 和 O(n) 相等。他的处理方法涉及一

点代数知识和大量的技巧, 可以分成三个步骤。下面我们开始温习欧

拉的做法。

步骤 1 引入无限乘积。

P (x) = (1 + x)(1 + x2)(1 + x3)(1 + x4)(1 + x5)(1 + x6) · · ·
其中项的构成模式是显然的。欧拉从不胆怯, 他把这些项展开并且合

并 x的幂相同的项。产生的表达式的常数项显然是 1,是由无穷多个 1

相乘得到的。根据这种乘积, 只有一种方法得到 x, 也就说第一个因子

中的 x 与其后的 1 相乘后得到 x。类似地, x2 也只有一个。但是却有

两种方法得到 x3：第一种方法是第三个因子的 x3 与所有 1 相乘, 第

二种方法是第一项中的 x 与第二项中的 x2 相乘。我们把 x3 项写成

(x3 + x2+1) 不仅可以表示有两个 x3 项, 而且还可以表明它们的生成

方法。按照这样的规定, 两个 x4 项表示成 (x4 + x3+1), 三个 x5 项写

成 (x5 + x4+1 + x3+2), 四个 x6 项写成 (x6 + x5+1 + x4+2 + x3+2+1), 等

等, 依次类推。

这一过程可以一直持续下去直到我们厌烦为止, 但是其模式是显

然的：P (x)的展开式中 xn 项的数量等于把 n写成不同整数之和的方

法数。在这点上,注意到四个 x6 项的指数就是上面我们发现的 6的不

同的整数分解形式。P (x) 的展开式中的每个因子都含有 x 的不同次

幂, 从而保证了这种不同性。
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因此, P (x) 的展开式中 xn 的系数正好是 D(n), 即把 n 分解成不

同因子之和的方法数。换句话说

P (x) = 1+D(1)x+D(2)x2+D(3)x3+D(4)x4+D(5)x5+· · ·+D(n)xn+· · ·
步骤 2 暂时把 P (x) 放到一边, 引入表达式

Q(x) =
(

1
1− x

)(
1

1− x3

)(
1

1− x5

)(
1

1− x7

)
· · ·

其中分母的特征是所有不断增加的 x的奇数幂。欧拉首先不得不把每

一个这样的分数转化成非分数表达式。

但是如何做呢？先不考虑这个无穷级数的微妙, 我们观察到

1 = 1− a + a− a2 + a2 − a3 + a3 − a4 + a4 − · · ·
因为右边除了第一项之外, 所有项都消掉了。把右边的项如下配对, 并

提取因子使得我们把上式变成

1 = (1− a) + (a− a2) + (a2 − a3) + (a3 − a4) + (a4 − a5) + · · ·
= (1− a) + a(1− a) + a2(1− a) + a3(1− a) + a4(1− a) + · · ·

然后把上式两边同时除以 1− a, 得到

1
1− a

=
1− a

1− a
+

a(1− a)
1− a

+
a2(1− a)

1− a
+

a3(1− a)
1− a

+
a4(1− a)

1− a
+ · · ·

= 1 + a + a2 + a3 + a4 + · · ·
因为我们可以消掉上式的 1− a。这样我们得到结论

1
1− a

= 1 + a + a2 + a3 + a4 + · · · (∗)

此时在上面的公式中用 x 取代 a 得到
1

1− x
= 1 + x + x2 + x3 + x4 + · · ·

我们还可以把上面这个表达式写成
1

1− x
= 1 + x1 + x1+1 + x1+1+1 + x1+1+1+1 + · · ·

接下来在公式 (*) 中用 x3 取代 a, 得到
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1
1− x3

= 1 + (x3) + (x3)2 + (x3)3 + (x3)4 + · · ·
= 1 + x3 + x3+3 + x3+3+3 + x3+3+3+3 + · · ·

类似地, 用 x5 取代 (*) 中的 a, 得到
1

1− x5
= 1 + (x5) + (x5)2 + (x5)3 + (x5)4 + · · ·
= 1 + x5 + x5+5 + x5+5+5 + x5+5+5+5 + · · ·

等等, 依次类推。

利用这些表达式, 欧拉把 Q(x) 转化成如下形式：

Q(x) =
(

1
1− x

)(
1

1− x3

)(
1

1− x5

)(
1

1− x7

)
· · ·

=(1 + x1 + x1+1 + x1+1+1 + x1+1+1+1 + · · · )
(1 + x3 + x3+3 + x3+3+3 + · · · )(1 + x5 + x5+5 + · · · ) · · ·

在此, 他把上面的乘积展开。同样, 出现了一个常数项 1, 其后是单个

x1 = x和单个 x1+1=x2。有两个 x3 项出现：x3 和 x1+1+1。我们得到的

一个 x4 是通过把第二个括号里的 x3 与第一个括号 (而其余括号只提

供一个 1)的 x1 相乘而得到的,而另外一个 x4 是通过把第一个括号里

的 x1+1+1+1 乘以其他的 1 得到的。类似地, x5 出现三次 (x5, x3+1+1,

x1+1+1+1+1)。x6 出现四次 (x5+1, x3+3, x3+1+1+1, x1+1+1+1+1+1)。

继续下去。出现在 Q(x) 展开式中 xn 的项数显然正好等于把 n

写成奇数之和的方法数,因为 Q(x)中作为指数只出现奇数幂。注意到

x6 的四个指数的排列方式就是我们早前看到的把 6 写成奇数之和的

方法数, 这可以作为这一事实的一个附加验证。因此, 当 Q(x) 被展开

成无限和时, xn 的系数就是上面定义的 O(n)。即有

Q(x) =1 + O(1)x + O(2)x2 + O(3)x3

+ O(4)x4 + O(5)x5 + · · ·+ O(n)xn + · · ·

步骤 3 重写步骤 1 和步骤 2 中的 P (x) 和 Q(x), 我们最终将证明下

面这样一个相当出乎意料的结论：这二者是相同的。为了证明这一点,
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从原来的 Q(x)的表达式开始,把它的分子和分母乘以 (1−x2), (1−x4)

以及其他所有偶数幂的项。于是有

Q(x) =
(

1
1− x

)(
1

1− x3

)(
1

1− x5

)(
1

1− x7

)
· · ·

=
(1− x2)(1− x4)(1− x6)(1− x8) · · ·

(1− x)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6)(1− x7) · · ·

接下来,回想一下表达式 (1−x2)可以被因式分解成 (1−x)和 (1+x)

的乘积, 而 (1− x4)=(1− x2)(1 + x2), (1− x6)=(1− x3)(1 + x3), 等等。

把上式的分子用这些表达式取代, 得到

Q(x)=
(1−x)(1 + x)(1−x2)(1 + x2)(1−x3)(1 + x3)(1−x4)(1 + x4) · · ·

(1− x)(1−x2)(1− x3)(1−x4)(1− x5)(1−x6)(1− x7) · · ·

从这个表达式我们立即可以看到分母中的每一项都与分子中的相同项

消掉。当所有这些消除工作完成后, 就剩余

Q(x) = (1 + x)(1 + x2)(1 + x3)(1 + x4) · · ·
就如同变魔术一样,这个表达式正是我们最初给出的 P (x)公式。总之,

Q(x) 和 P (x) 的确相同。

但是现在, 我们紧紧跟随欧拉得出他的结论。因为我们前面已建

立表达式

P (x) = 1+D(1)x+D(2)x2+D(3)x3+D(4)x4+D(5)x5+· · ·+D(n)xn+· · ·
O(x) = 1+O(1)x+O(2)x2+O(3)x3+O(4)x4+O(5)x5+· · ·+O(n)xn+· · ·
而且因为在步骤 3 中, 我们已证明了 P (x) 和 Q(x) 相等, 所以显然有

每个 xn 的系数必定是相等的。因此 D(1) = O(1), D(2) = O(2), 一般

地对于任意的整数 n, 有 D(n) = O(n)。换句话说, 这表明把 n 写成不

同整数之和的方法数的确等于把它写成奇数 (不必是不同的) 之和的

方法数。这就是欧拉寻求的结论, 他的证明完毕。 ¥
这个论证是一个杰作, 它证明了关于整数分解的一个巧妙但又不

是那样显然的事实。它展现了如下的欧拉数学的典型特征：
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(1) 他非常熟练于处理符号表达式。在上面的证明中这种能力表

现得淋漓尽致, 并为他自己赢得了整个时代最伟大的符号操纵人的声

誉。

(2) 欧拉在操纵代数表式方面的才能与对这样的处理能够带来正

确结论的信念相得益彰。后来的数学家证明, 不加区分地处理符号,特

别是那些涉及无限过程的符号, 会带来麻烦。但是欧拉却似乎虔诚地

相信, 如果我们能够追随符号, 它们就会通向真理。

(3)欧拉最为硕果累累的数学策略之一是,用两种不同的方法写同

一个表达式, 使这些不同的表达相等, 并从它们得出强大的结论。我们

的例子就是这种情况, 其中 P (x) 和 Q(x) 给出表示同一种事情的不同

方法。这样的从两个根本不同的角度审视一个对象的能力可以刻画很

多欧拉最具影响最完美的论证。

(4) 最后, 除去代数处理的能力和超群的技术, 剩下的就是令人震

撼的智慧。在上面的证明中, 什么样的洞察力致使他为了收集整数分

解的信息而去展开代数表达式呢？什么样的洞察力把他引导到表达式

P (x) 和 Q(x) 呢？又是什么样的洞察力向他展现这两个表达式是相同

的呢？当你理解了他的证明之后, 就存在一种断言它显然成立的冲动。

这是后见之明。但是在未知领域开辟出一条新路需要极高的智慧。

最后我们应该再说几句。莱昂哈德�欧拉是一名一流的数学家,

然而他在一般公众当中几乎不为人知, 人们甚至不能正确地说出他的

名字。从来没有听说过欧拉的人们也许不难确认皮埃尔–奥古斯特�

雷诺阿 (Pierre-Auguste Renoir) 是一名艺术家, 约翰尼斯�布拉姆斯

(Johannes Brahms)是一名音乐家,而沃尔特�斯科特爵士 (Sir Walter

Scott) 是一名作家。

但是,糟糕的是欧拉不是画家中的雷诺阿,而是伦勃朗(Rembrandt);

他不是音乐家中的布拉姆斯, 而是巴赫 (Bach); 他不是作家中的沃尔

特�斯科特,而是威廉�萨士比亚 (William Shakespeare)。有如此身份

的这样的一名数学家——数学界的萨士比亚——却几乎没有得到公众

的认可, 是一个极大的悲剧。
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所以, 我奉劝读者放下这本书, 去创建粉丝俱乐部, 拉出横幅, 采

用一切方法传播一个最具洞察力、最具影响力和最有智慧的数学家：

瑞士的莱昂哈德�欧拉。
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皮埃尔�德�费马 (1601―1665) 的任何传记一定都很短。他的一

生跨越了 17 世纪的前三分之二, 但是说实话, 他的一生相当乏味。他

从没有在大学执教, 也没有在皇家科学院占据一席位置。因为他身兼

培训律师和地方法官的职位, 因此在他的生涯中费马没有发表过什么

东西, 而是通过信件以及没有发表的手稿来传达他的想法。因为他不

是职业数学家, 所以费马被誉为“业余爱好者王子”的称号。但是说到

“业余”,如果我们的意思是“没什么才能的新手”,那么这个绰号完全

不准确。

“数学业余爱好者”这一词条有一个怪圈。我们好像一定要把人

分成职业数学家或者业余数学家, 然而事实上历史上的每一个人也许

都将落入业余数学家的行列。于是你的支票簿上的加法错误当然会被

分类为“业余数学家”。那么约吉�贝拉 (Yogi Berra) 的言论“成功是

90％的努力加上 20％的幸运”就更业余了。

多年前这样的描述就被轻松地从这位“业余”费马的数学成果上拿

掉了。即使他不如同时代的两个法国伟人勒内�笛卡儿和布莱斯�帕

斯卡尔有名, 但是在数学家的心中他却占据着更令人尊敬的地位。本

章的宗旨就是解释这是为什么。
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17世纪初, 皮埃尔�德�费马出生于法国南部的博蒙–德–洛马涅

(Beaumont de Lomagne)。他的父亲是一名富裕的商人和城镇执政官,

在这样相当安适的环境下, 年幼的皮埃尔度过了他的童年。他接受了

良好的教育,开始主要是学习古典语言和古典文学,随后进入大学专心

学习法律。这样训练的结果是, 他在图卢兹城的最高法院当上了一名

文职官员, 这一职位除了收入稳定之外还使得费马有权在他的姓前加

一个“de”以显示低等法国贵族的身份。

作为一名杰出的人物,费马结婚并与他的妻子生下了五个孩子。他

在天主教教堂担任很多重要的职位, 他是一名虔诚的教徒。据我们所

知, 他的一生都是在他的出生地方圆一百英里以内度过的。[1] 这位法

国人从来没有去过巴黎。

总之, 皮埃尔�德�费马的生活圈子相当有限而且他的生活相当

安定, 事实上非常安定, 因此他不必做很多事。这就暗示他的工作强

度不是很大,因此为他写拉丁诗或者希腊文献的学术评论提供了时间。

拥有这样充裕的时间和敏锐的智慧, 费马使人想起了大约两个半世纪

之后的年轻人艾伯特�爱因斯坦, 他在瑞士专利局的乏味职位给了他

充足的时间去发明他的相对论。

费马真正喜欢且更有热情的不是古典诗和教堂的事务, 也不是法

律,而是数学,他对数学的贡献影响深远。在很多课题的发展中他都起

着重要的作用,远不只本书中描述的那有限的几个课题：数论、概率和

微分。正如前面所提到的那样, 他回避发表他的数学发现, 他下面的言

论可能表明其理由,“我非常不善于书写我的证明, 因此我已经满足于

发现真理,等将来我有机会去证明它们时,我满足于知道证明它们的方

法。”[2]

还好,他能与欧洲的其他学者通过书信交流他的想法。就这样, 这

位来自图卢兹的法官成为一位不知疲倦的通信者, 他的信件为我们提

供了他最好的数学研究信息。这些信件的收信人, 如笛卡儿、帕斯卡

尔、克里斯蒂安�惠更斯、约翰�沃利斯和马林�梅森等,读起来就如

看到了跨越 17 世纪前 50 年的一本科学的“名人录”一样。从这些人
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那里, 费马了解巴黎、阿姆斯特丹和牛津发生的事情;费马又向他们传

达了他自己的了不起的数学发现。

皮埃尔�德�费马

(拉法耶特学院图书馆惠允)

这些发现中最引人注目的是现在我们称之为分析几何的公式和他

对概率论基础所做出的贡献,分析几何的公式出现在 1636年写的一篇

名为《平面与立体的轨迹引论》的论文之中, 而他对概率论的贡献则

都包含在 1654 年以来的书信中。由于这一贡献, 费马的名字和他的合
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作者布莱斯�帕斯卡 (1623―1662) 的名字写到一起。在他们之间的这

种广泛的书信来往中, 他们总结想法, 提出批评, 促使到那时为止没有

引起人们注意的概率论成为数学的焦点。很多他们的共同研究成果直

接或间接地进入我们在第 B 章中所说的雅各布�伯努利的《猜度术》

中。

说到分析几何,费马的名字还与另外一位数学家联系在一起,尽管

这一次这位数学家不是合作者。这个人就是勒内�笛卡儿, 他独立设

计了他自己的分析几何体系。他们二人都抓住了把当时流行的两大数

学思想―几何和代数―结合起来这一极具想象力的想法。(参见第 XY

章, 那里对此话题将做进一步的讨论。)

很遗憾, 如往常一样, 费马从来不发表他的论文, 而笛卡儿已于

1637 年在具有影响的《几何》之中告知全世界他的发现。由于是最先

发表的, 所以笛卡儿接受了公众的赞美并且他的名字从此以后永远嵌

入术语笛卡儿平面之中。如果我们的这位法国的地方法官能够早一点

发表研究成果, 也许数学家们谈论的是费马平面。

笛卡儿赢得了这场战役, 但是肯定没有打赢这场战争。事实上, 笛

卡儿对数学的热情不及费马, 费马对他协同创造的分析几何还做出了

很多其他很有意义的贡献, 但却常常不被人们注意。这种贡献之一就

是费马找到了特定曲线的极大值和极小值, 这也是他战胜笛卡儿的一

个例子。

这个问题听起来很熟悉。这是我们在第 D章中所讨论的微分学的

重要目标之一。我们把确定极值所必要的公式化过程归功于莱布尼茨

和牛顿, 但是我们忘了提到早在几十年前费马就已经设计了非常类似

的方法。这些方法出现在他的《求极大值和极小值的方法》之中, 这是

另外一个非常杰出但也同样没有出版的成果。

17 世纪 30 年代末, 费马对极大值、极小值和切线的处理使他与

笛卡儿发生了冲突。笛卡儿发明了自己的处理切线问题的技术, 并断

言：“这不仅是我所知道的几何中最有用最一般的问题, 而且是我一直

以来想要知道的。”[3] 然而, 事实证明, 甚至对初级的例子笛卡儿的方
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法也很笨拙。费马几乎毫不费力就能做到的一切却需要笛卡儿一页一

页地进行令人崩溃的代数计算。

一度因为这件事引发了一场竞争,因为笛卡儿声称他的方法更好。

然而不久就连笛卡儿本人也显然明了费马采用了更好的途径。笛卡儿

承认了自己的失败,这对勒内�笛卡儿来说是极其少见的事情,给那个

时代两个最伟大的数学家留下了抹不去的伤痛。

因为费马非常简单地成功解决了极大值和极小值问题,皮埃尔–西

蒙�德�拉普拉斯 (1749―1827)称他是“微分学的真正发明人”。[4] 一

位法国数学家对另一位法国数学家的评价如此夸张, 显然拉普拉斯是

被一股失控的民族情节冲昏了头脑。尽管费马有如此的远见, 但是我

们引证几条理由说明为什么他不应该享有如此大的荣誉。

其一, 费马的技术只适用于某些特定的曲线族：它们的形式是

f(x) = xn 和 g(x) = 1/xn, 有时候, 称前者为“费马抛物线”, 称后

者为“费马双曲线”。微积分的真正发明者应能处理更复杂的函数, 正

如莱布尼茨说的那样,“不受分数或者无理量的限制”。

更重要的是,费马没有发掘到所谓的微积分基本定理,这是我们将

在第 L章中探讨的这一学科伟大的大一统思想。这一定理如此核心如

此重要, 使得没有发现它的人都自动失去了声称自己发明了微积分的

资格。应该提及的是, 牛顿和莱布尼茨显然非常清楚地看到了这个基

本定理。

因此, 现代数学史学家通常不把微积分发明者的称号授予皮埃

尔�德�费马。但是几乎所有人都承认他几乎发明了微积分。

所以我们承认费马在分析几何、微分学和概率论中有很多重要的

发现, 并承认这些杰出的贡献是属于这位“业余者”。但是这一切只是

一个序幕,费马的声望是赖于他对数论的研究,其成就远远超越上面所

述的任何成就。

正如我们在第 A章中提到的那样, 欧几里得和其他一流的数学家

已经对这门学科做过研究, 但是可以毫不夸张地说, 现代数论源于费

马。对这位研究过希腊古典著作的法国学生来说, 古代文献点燃了他
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对数论的兴趣。其中公元前 250年丢番图的《算术》就是最佳例证, 这

本著作的 1621 年译本引起了费马的注意。他认认真真地通读了这本

著作, 并在他经常翻阅的书页的空白处写下自己的评述。

对费马来说, 这门学科有着无限的魅力。他沉迷于整数, 或者说与

整数的关系无比亲密, 而且有着不可思议的能力能够认出它们的特性,

就如一个人认出老朋友一样。表面上他是图卢兹的一位受人尊敬的法

官, 但是私下地, 他是一位卓越的数论学家。

这里我们只能触及他的少数发现。当然, 这名数学家处于不利的

境地, 因为他留下的东西几乎没有证明。这里只有边页注释, 诱人的提

示, 等等, 这就是我们拥有的一切。后来的学者, 特别是欧拉, 试图重

建费马的思维过程或者可能的推理路线。但是用 20 世纪数学家安德

烈�韦尔 (André Weil) 的话说：“当费马断言他有了某个论断的证明

时, 对这样的声明必须格外小心。”[5]

他最惊人的断言之一是关于将素数分解成两个完全平方数之和。

要了解这个发现的实质, 还需要一点预备知识。

首先, 显然, 如果一个整数被 4 除, 那么余数可能是 0, 1, 2, 3。总

之,余数必须小于除数。数学家说任意整数都属于下面四类整数之一：

n = 4k (这个数恰好是 4 的倍数)

n = 4k + 1 (这个数比 4 的倍数大 1)

n = 4k + 2 (这个数比 4 的倍数大 2)

n = 4k + 3 (这个数比 4 的倍数大 3)

显然形如 4k 和 4k + 2 的数是偶数, 因此除了 2 之外, 它们不是素数。

奇数以及更重要的任意奇素数, 必须是形如 4k + 1 或 4k + 3 的数。

无需说, 这两种类型的素数有很多很多例子。在前面的范畴中, 例

如有素数 5 = 4× 1 + 1, 13 = 4× 3 + 1, 37 = 4× 9 + 1; 在后面的范畴中,

7 = 4× 1 + 3, 19 = 4× 4 + 1, 43 = 4× 10 + 3。所有奇素数或者落入一

个范畴中或者落入另一个范畴中。

除了这些定义特性之外, 这两种奇素数的类型似乎大致相同。但

事实上, 在一个非常重要而且令人惊讶的方面, 它们不一样, 这种差异
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就是费马论断的核心。

这一年是 1640年。在给他父亲的圣诞节贺信中,费马说：“一个比

4 的倍数大 1 的素数是唯一一个直角三角形的斜边。”[6] 这是他描述

第一范畴中素数的非常奇怪的几何方法, 即形如 4k + 1 的素数可以被

分解成两个完全平方的和, 而且有且只有一种可能的分解方法。另外,

他发现形如 4k + 3 的素数不能用任意方法表示成两个完全平方的和。

在这样的见解下, 奇素数的两种范畴显示出完全不同的特点。一种是

完全平方和的类型, 而另外一种不是。

看一些例子可以有助于理解。对于素数 13 = 4 × 3 + 1, 我们有

这样的分解 13 = 4 + 9 = 22 + 32。对于 37 = 4 × 9 + 1, 我们有分解

37 = 1+36 = 12 +62;对于素数的更具挑战性的例子, 193 = 4× 48+1,

我们有 193 = 49 + 144 = 72 + 122。相反, 例如素数 19 = 4 × 4 + 3 或

者 199 = 4× 49 + 3 却不能分解成两个完全平方的和。

证明后面的事实并不太困难。我们只需看一下当偶数和奇数是完

全平方时发生了什么事。

定理 形如 n = 4k + 3 的奇数不能写成两个完全平方的和 a2 + b2。

证明 我们考虑下面三种情况。

情况 1 如果 a 和 b 是偶数, 那么 a2 和 b2 也是偶数。因此两个偶数

的和 a2 + b2 本身也是偶数, 因此它不可能等于奇数 n = 4k + 3。

情况 2 如果 a 和 b 是奇数, 它们的平方 a2 和 b2 也是奇数。因此两

个奇数的和 a2 + b2 是偶数, 因此也不能等于 n = 4k + 3。

情况 3 唯一剩余的可能情况是我们把一个偶数的平方和一个奇数

的平方加起来。假设 a 是偶数; 这表明它是 2 的倍数, 我们可以写成

a = 2m, 其中 m是某个整数。因为 b是奇数, 它比 2的倍数大 1, 所以

我们可以写成 b = 2r + 1, 其中 r 也是某个整数。从而当我们把一个偶

数的平方和一个奇数的平方加起来时, 我们得到

a2 + b2 = (2m)2 + (2r + 1)2

= 4m2 + (4r2 + 4r + 1) 根据代数法则

= 4(m2 + r2 + r) + 1 提取公因子 4
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因此 a2 + b2 比 4(m2 + r2 + r)大 1,即它比 4的倍数大 1。尽管这的确

使 a2 + b2 是一个奇数, 但是它不可能是 n = 4k + 3, 这是一个比 4 的

倍数大 3 的数。

总之, 如果 a 和 b 都是偶数或都是奇数, 那么表达式 a2 + b2 是偶

数; 如果 a 是偶数且 b 是奇数 (或反过来), 那么表达式 a2 + b2 是一个

比 4 的倍数大 1 的数。无论哪种情况 a2 + b2 不可能是一个比 4 的倍

数大 3的数。因此形如 4k +3的奇数和奇素数不可能写成两个完全平

方的和。证明完毕。 ¥
这就是费马的结果的一半。而另一半结果, 即形如 4k + 1 的素数

可以用一种且仅用一种方法写成两个完全平方的和, 却很难证明。如

往常一样, 费马只会留下含混且诱人的他的证明的提示。正是欧拉首

先在一个多世纪之后给出了这个证明。[7]

处于数论核心的这种素数的分解是迷人但非直观的。为了领略一

下它的威力, 考虑下面的问题：确定数 n = 53 461 是否是素数。(回想

一下第 A 章, 高斯称确定一个数是否是素数这一类问题为“算术中最

重要和最有用的”。) 稍加验算就可以证明, 对每一个简单的素因子的

候选者,如 2, 3, 5, 7, 11, 13等,都不可行,我们也许很快就开始讨厌寻

找因子。

但是观察下面三个生动的事实：

(a) n = 53 461 = 4× 13 365 + 1, 所以 n 有 4k + 1 的形式;

(b) n = 53 461 = 100 + 53 361 = 102 + 2312,所以 n可以用一种方

法写成两个完全平方的和;

(c) n = 53 461 = 11 025 + 42 436 = 1052 + 2062, 所以 n 可以用第

二种方法写成两个完全平方的和。

从这三条线索, 我们推断出 n 是合数。否则, 它应该是一个形如

4k + 1 形式的素数, 却有如事实 (b) 和 (c) 所展示的两个不同的完全

平方的和的分解。根据刚才陈述的费马定理, 这样的情况是不可能的。

因此 n 不可能是素数。

这一推断的两个特性可能是读者烦恼的原因。首先, 很正常会问

如何得出事实 (b) 和 (c) 这样的两个平方的分解; 表面上, 确定两个这
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样的分解与把原来的数分解因数一样困难。在回应这个例子是精巧设

计出来的指责时, 我们承认：它是精巧设计出来的。

更重要的是另外一个令人震惊的根源, 即我们的意愿：不用展示

任何一个因子就能断定 n = 53 461 不是素数。好像为了证明某个数

是合数我们就必须明确给出其因子似的。利用上面的方法只能证明

53 461 不符合素数所具备的条件, 这个方法显然不是非素数的直接证

明。但是我们的结论听起来仍然很合理。在我们的推理中没有不合理

的地方, 而且有人告知我们, 在数论学家的军火库里有很多武器, 其中

有些还相当的精妙。

为了抚平这些躁动不安的情绪, 现在我们确定 53 461 的素因子。

其间, 我们还要说明费马的另外一个发现, 他独创的因数分解方案。

假设我们希望分解一个整数 n。为了把 n 分成加法的两个部分,

我们当然可以使用 n/2, 因为 n/2 + n/2 = n。但是把 n 分成乘法的两

个部分, 我们可以用
√

n, 因为
√

n×√n = n。

这就是费马开始寻找因子的地方。当然
√

n 很少是整数, 所以我

们设 m 是等于或大于
√

n 的最小整数。例如, 当要因数分解 n = 187

时, 我们注意
√

n =
√

187 ≈13.67, 所以我们取 m = 14。

现在考虑这样的数列 m2−n, (m + 1)2−n, (m + 2)2−n,等等,并

假设这些数当中一定有一个是完全平方。即假设我们最终可以寻找到

一个数 b 使得 b2 − n = a2。

简单的重排列把这一等式转化为 n = b2 − a2, 这是被称为“平方

差”的重要模式。对其进行因式分解, 得

n = b2 − a2 = (b− a)(b + a)

由此, 给出把 n 分解成两个因子 b− a 和 b + a 的窍门。

下面给出费马分解方案的一个简单例子,我们要分解 187。开始取

m=14, 并看到 142−187=9=32。在我们第一次尝试后, 我们得到一个

完全平方。因此取 b=14, a=3, 我们有

187 = 142 − 9 = 142 − 32 = (14− 3)× (14 + 3) = 11× 17

于是 187 被分解。
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充分热身之后, 我们现在分解 n=53 461。注意
√

n =
√

53 461 ≈
231.216, 所以开始我们取 m=232 并着手寻找一个完全平方：

2322−53 461=363, 不是一个完全平方

2332−53 461=828, 不是一个完全平方

2342−53 461=1 295, 不是一个完全平方 (尽管 1 296=362)

2352−53 461=1 764 =422, 成功！

因此 53 461 = 2 352 − 422 = (235− 42)× (235 + 42) = 193× 277,

在费马的帮助下, 我们的数已经被分解成素数了。总而言之,这是一个

相当容易的过程, 特别当与试错搜索相比时更是如此。这表明稍稍一

点创新会带来很大的帮助。

在本章的最后,我们提一下出自费马之笔的最著名的数论陈述,不

论好坏。但也很可能正是因为它实在太难,它才赢得了这样的声誉。下

面我们要陈述所谓的“费马最后定理。”

这个故事是从费马研究希腊文献丢番图的《算术》开始的, 其中

的课题还是两个完全平方的和。在某些情况下, 这样的和本身可能

就是一个平方。我们脑子里能够想到的例子可能是 32+42=52 或者

4202+8512=9492(诚然, 较之后面的例子, 我们会更快地想到前面的例

子)。但是费马沉思着, 两个完全立方的和也能够是另外一个完全立方

吗？

此时, 在《算术》的页边上, 他写道：“把一个立方分成另外两个立

方,或者一个四次幂,或者一般地任意高于二次的幂分成两个相同次幂

是不可能的。”[8] 用符号表示的话, 费马说的是, 不存在正整数 x, y 和

z, 使得 x3 + y3 = z3, x4 + y4 = z4, x5 + y5 = z5, 等等。他的一般结论

是：如果 n >3, 方程 xn + yn = zn 没有整数解 x, y 和 z。

就好像是在作弄后代的学者似的, 费马附加了整个数学中可能是

最著名的陈述：“我确实已经找到它的极好的证明, 但是页边太窄了写

不下它。”[9]

这就是他的完全叫错了名字的“最后定理”(last theorem)。首先

它的“最后”不是因为它是费马生命中最后的猜测,而是因为在他的其
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他猜测都得到证明之后, 这个猜测仍然没有得到证明。另外, 把这个猜

测称为他的“定理”也是用词不当, 因为他没有给出证明。

我们发现证明费马的猜测不成立所需要的是指数 n >3 且满足

xn + yn = zn 的三个特殊数 x, y, z。

另一方面, 为了证明这个猜测, 就必须构思一个对于所有的指数

n >3 都适合的推理, 至少这本身就给我们提出了问题。有一些情况已

经得到处理。我们认为费马自己已经证明了不存在满足 x4+y4 = z4的

正整数。18世纪,欧拉给出一个非常充分的正确证明,证明了 x3+y3 =

z3 同样不成立,然而,他预测说,对三次幂和四次幂的单独证明并没有

从根本上给出证明一般定理的线索。

很多年过去了,其他数学家也参与这一证明之中。索菲�杰曼 (So-

phie Germain, 1776―1831)做出了重要贡献,他在非常特殊的方向上付

出了一系列开拓性的努力, 但证明太复杂, 在这里不给出描述了。1825

年, 年轻的勒琼�狄利克雷 (P. G. Lejeune Dirichlet, 1805―1859) 和

他的祖父勒让德 (A. M. Leyendre, 1752―1833) 证明了两个五次幂的

和不可能等于一个五次幂。1832 年, 狄利克雷排除了 x14 + y14 = z14

的可能性, 几年后加布里埃尔�拉米 (Gabriel Lamé, 1795―1870) 排除

了 x7 + y7 = z7。然后是 1847 年, 厄恩斯特�库默尔 (Ernst Kummer,

1810―1893) 开发了一个强大的策略, 从而证明了, 对于一大类的指数,

费马猜测是正确的。当然, 还是没有办法排除这种可能性, 即对于一大

类指数这个猜测是不成立的。[10] 事态进展得很缓慢。

对这个问题的兴趣一直持续到 20 世纪, 到了 1909 年, 这一兴趣

已部分燃烧起来,原因是正确解将获得 100 000德国马克的奖金。对经

济利益的向往带来最糟糕的结果, 就是产生了众多贪婪的冒牌数学家,

而且错误的推理就如洪流一般席卷了整个学术界, 在贝尔 (E. T. Bell)

的《最后问题》的尾注中讲述了一个有趣的数学家的轶事,这位数学家

对大量错误证明的回应是一个模板信件, 它是这样开始的：

亲爱的先生或女士：

您的费马最后定理的证明已经收到了。第一个错误出现在第 页,
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第 行。[11]

因为第一次世界大战后德国通货膨胀惊人, 因而这份奖金贬值到

了荒谬的程度, 所以出资这份 100 000 德国马克的奖金不是一件困难

的事情。

有幸的是数学家不会永远被经济利益驱驶。有一位带着高尚动机

的数学家就是格尔德�法尔廷斯 (Gerd Faltings, 1954―)。1983 年, 法

尔廷斯证明了, 对于任意的 n >3, 费马方程 xn + yn = zn 至多有有

限多个不同解 (排除一组解是另外一组解的倍数这类情况)。咋看起来,

这个证明几乎没有什么了不起的帮助。法尔廷斯没有排除这样的可能

性, 即对某些指数来说, 这个方程有 100 000 个解, 这距离费马的它没

有解的断言还太遥远。尽管如此, 法尔廷斯还是封死了一般情况下, 有

无限解的可能性。因为这一证明, 1986 年在加利福尼亚的伯克利举行

的国际数学家大会上,法尔廷斯获得了菲尔兹奖,这是数学界的诺贝尔

奖。

在这本书投入印刷的时候, 数学家正在热议一个非常有希望的新

的费马最后定理的证明, 这是英国人安德鲁�怀尔斯 (Andrew Wiles)

博士的证明。当时的热情非常高涨以至于这个故事已登载到《纽约时

报》的头版, 而且被认为有充分的新闻价值而获批在《纽约时报》上登

载整版文章 (在《纽约时报》上面登载的数学故事少得就如《新闻周

刊》上的广告)。[12] 如果怀尔斯的证明经得起来自数学团体的审查,这

将是一个伟大的胜利, 那么他的名字将被大大地写在以后的数学历史

书中。如果他的证明有错误, 它将被扔入数以千记的未如愿的证明之

中。请继续关注。
①

到这里也许我们应该离开这位谦逊的法官,皮埃尔�德�费马。在

数学家中他是一个令人敬畏的人物, 由于研究古代大师的著作而促使

他开发出现代数学如此众多的关键思想。在 1659 年给朋友的一封信

中, 老年的费马还表达了这样的愿望：“也许子孙后代会感谢我向他们

展示了古人不知道的每一件事。”[13]

① 数学界已经认可了怀尔斯博士的证明, 费马最后定理最终获得证明。——译者注
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我们可以毫不犹豫地断言：后人已经很感谢他了。

参 考 文 献

[1] Weil, Number Theory, p. 39.

[2] E. T. Bell, The Last Problem, (Introduction and Notes by Underwood

Dudley), Mathematical Association of America, Washington, DC, 1990,

p. 265.

[3] Boyer and Merzbach, History, of Mathematics, p. 344.

[4] Ibid, p. 333.

[5] Weil, Number Theory, p. 51.

[6] Michael Sean Mahoney, The Mathematical Career of Pierre de Fermat,

Princeton U. Press, Princeton, NJ, 1973, p. 311.

[7] Burton, Elementary Number Theory, p. 264.

[8] Smith, Source Book in Mathematics, p. 213.

[9] Ibid.

[10] Harold M. Edwards, Fermat’s Last Theorem, Springer-Verlag, New York,

1997, p. 73.

[11] Bell, Last Problem, p. 300.

[12] Gina Kolata,“At Last, Shout of‘Eureka!’in Age-Old Math Mystery,”

New York Times, June 24, 1993, p. 1; Michael Lemonick, “Fini to

Fermat’s Last Theorem,” Time, July 5, 1993, p. 47.

[13] Edwards, Fermat’s Last Theorem, p. 38.

图灵社区会员 cindy282694 专享 尊重版权



我们已经在第 C章中介绍了曾一度是数学基石的几何。在本章以

及接下来的两章, 我们要深入研究一下这个古老而优美的学科。从几

何的最优秀的实践者——古希腊数学家开始是最好的选择。

不论是从数学角度还是从历史角度, 也不论是从实践角度还是从

审美角度, 希腊几何都被认为是人类智慧的一项重要成就。它的黄金

时代是从公元前 600年的米利都的泰利斯到公元前 2世纪的埃拉托色

尼斯、阿波罗尼斯和无人能比的锡拉库扎的阿基米德。此后是稍稍逊

色的“银色时代”, 持续到公元 300年的帕普斯时代。这些人以及很多

其他人把几何从测量土地 (geo=earth, metria=measure)的实际方法发

展成为由坚实的逻辑法则编织起来的抽象定理和结构的庞大体系。希

腊几何堪称是最重大的西方文明的知识与艺术活动之一, 因此它与伊

丽莎白一世时代的戏剧艺术或法国印象流派有许多共同之处。同印象

派艺术家类似,希腊几何学家有共同的哲学和风格,虽然说有各种各样

的法国艺术家,也有各种各样的希腊人,但是印象派油画或希腊定理的

深层的一贯特征却总是一目了然的。

这些特征是什么呢？历史学家艾弗�托马斯 (Ivor Thomas) 在他

全面的《希腊数学著作》中提炼出了这样的特征：(1) 希腊人证明定理

逻辑严密, 令人印象深刻; (2) 纯粹几何而非数字几何是他们的数学之
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本; (3) 在提出和发展数学命题上, 希腊人拥有娴熟的组织能力。[1]

除这些特征之外, 我们再添加另外两个特征。一是他们把几何看

成是最优秀的纯思维训练, 一度是理想的、精神的和永恒的课题。在

《理想国》中, 柏拉图说, 尽管几何学家画出实实在在的几何图形用来

帮助他们观察, 但

他们不是考虑这些图形,而是考虑这些图形所代表的那些东西;因

此, 他们论证的关键是正方形或直径本身, 而不是他们画出的东西; 同

样,当他们模拟或画出一个物体时,这可能是它们自己在阴影中或在水

中的像,于是他们把它们当作像,努力弄明白那些只能通过想象而看不

到的抽象物体。[2]

当然, 这样的观点与柏拉图远离人类经验的理想存在的思想相吻

合,而且几何思想在他的哲学形成中一定起着作用。不断寻求完美、符

合逻辑和完全合理的希腊思想家也许把几何看成是这种理想的化身。

虽然谈不上意义极其重大, 但是依赖圆规和直尺作几何构造绝对

是几乎整个希腊数学的中心。一方面, 这是柏拉图提及的画出真实图

形的实用工具。而在更抽象的意义下, 这些工具把直线 (通过直尺) 和

圆 (通过圆规)祭奉为几何实体的核心。利用理想直线的绝对精准和理

想圆的完美对称,希腊人创造了他们的几何图形,并由此创造了他们的

几何定理。今天,虽然我们拓展开来的数学已经超越了直线和圆, 但是

它们在希腊数学家心中至高无上的地位是名副其实的。

毫无疑问, 几何思想在希腊人之前就存在。例如,埃及和美索不达

米亚的文明就曾使用几何来分割田地以及建造金字塔, 我们将在第 O

章中再回到这一话题。但是, 正是从希腊人那里我们才找到了经严格

的逻辑证明了的最早的几何定理, 最早的命题。

据记载, 希腊最早的数学家是泰利斯, 他生长在鲸鱼出没的东爱

琴海岸, 同时也是希腊最早的天文学家和哲学家。据后来的评论家普

罗克洛斯 (Prolus) 说,“泰利斯是前往埃及并把这门学问带回到希腊

的第一人, 他发明了很多命题并为他的后人揭示了很多其他的基本原

理”。[3]
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据传说, 正是泰利斯首先证明了等腰三角形的两个底角相等以及

内接于半圆内的任意角等于90度 (有时候给后面这个定理一个饶舌的

名字：泰利斯定理)。可惜的是,这个传说就是我们所有的依据,因为他

实际的证明很久之前就已经消失了。但是, 古人对他的评价非常之高,

把他尊奉为“古代七贤”之一。(没有证据表明下面这个谣言是真的,这

个谣言说另外六位是暴躁, 幸福, 愚笨, 喷嚏, 文案, 害羞。)

从泰利斯开始,希腊几何开始起步。追寻它的发展足迹, 它的成功

和失败, 那是无论多少章节也说不完的。所以, 在此我们只能局限于两

个特殊的几何问题：欧几里得是如何用一支破圆规做几何的, 为什么

伊比鸠鲁学派的学者指责他还没有一头驴聪明。尽管这两个主题的选

择有点古怪, 但是它们却能让你领略到当时的数学家们的性情。

我们从大约公元前 300 年的亚历山大的欧几里得开始。尽管他写

了大量的数学论文,但正是《几何原本》使人们牢牢记住他的名字。《几

何原本》是到那时为止几乎整个希腊数学的系统展示。这本著作分成

13 卷, 包含 465 个关于平面几何、立体几何和数论的命题。把它称作

整个时代最伟大的数学教科书绝不为过, 自它在古希腊的出现到今天,

这本著作一直在被研究、编辑和敬重。

《几何原本》之所以如此重要, 是因为它从基本的原理出发, 进行

逻辑展开, 得到精妙的结论。欧几里得《几何原本》的第一卷一开始就

列出了 23 个定义, 这样做使得读者会非常精确地知道他的术语的意

思。他定义点是“不能再分的东西”(这是他的说明较少的定义之一),

等边三角形是“三条边相等的”三角形, 等腰三角形是“有两条边相等

的”三角形。

有了这些定义好的术语之后,欧几里得提出了五个公设,作为他的

几何基础, 这是随后展开一切的起点。给出的这五个公设没有证明, 只

需简单地认可它们。幸运的是, 这样的认可并不困难,因为这些公设平

淡无奇地展现在欧几里得的同代人和今天我们大部分人的面前。为了

我们本章的目的, 我们只需要前三个公设：

(1) [可以] 从任意一点到任意一点画一条直线。
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(2) [可以] 连续地在一条直线上产生一条有限直线。

(3) [可以] 以任意圆心和距离描绘出一个圆。

这些看起来非常简单, 不证自明。前两个公设合法化了无刻度直
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尺在几何画图中的使用,因为它们允许我们用一条直线连接两个点 (公

设 1) 或者取一条已存在的线并伸长它 (公设 2)。这就是直尺的作用。

第三条公理允许我们使用圆规：以一个定点为圆心和一个事先确定的

长度为半径画出圆。因此, 显然前三条公设为几何工具的操作提供了

逻辑支持。

但是,你可能回想起自己的几何课程,回想起使用圆规而实施的另

一种操作：把一个长度从平面的一个部分移动到另一个部分。这很容

易做。我们把圆规的两个点放置在要移动的这条线段的两个端点, 在

此锁住圆规, 并把它拿起来, 直挺挺地移动它, 然后在想要的地方放下

它。在很多几何画图中这是既简单又必要的过程。

然而, 欧几里得却没有引入这样的一个公设来表明用这种方式移

动长度是合法的。我们希望某个地方有一个自明的特权允许我们这样

做,但是我们什么也没有找到。尽管他的圆规能够画圆, 但是他没有明

确允许它被锁定在某个位置然后移动。因此有时候开玩笑说欧几里得

的圆规是一个“可折叠的圆规”,在它被从纸上拿起来的瞬间它就合上

了它的腿。

这引发一个非常严重的逻辑问题：难道这位受人尊敬的希腊几何

学家忘记了引入一个“移动长度的”的公设了吗？难道我们发现了欧

几里得的漏洞了吗？

完全不是那样。正如我们马上就会看到的那样, 没有引入这样的

一个公设, 欧几里得有他的理由, 逻辑上合理, 非常具有希腊的特性。

我们没有发现欧几里得的漏洞, 这一省略却恰好显示了他在几何上的

敏锐和组织才能。

取代公设, 欧几里得却引入了几个“常识”：一些更一般而且没有

几何特性的自明陈述。例如, 这里我们无需证明地接受“和同一个事物

相等的事物彼此相等”, 还有“如果相等的事物加上相等的事物, 那么

整体还相等”,还有“整体大于部分”。很少有人会挑这些陈述的毛病。[4]

一切就绪, 他准备开工了。从少数几个定义、公设和常识的小集

合演绎出一个庞大的几何躯干, 你要从哪里开始呢？这是一种令数学
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家 (和作家)举步维艰的最初挑战。但是,正如中国人告诉我们的那样,

万里征程始于足下, 而欧几里得从等边三角形开始了他穿越几何的征

程。《几何原本》的第一个命题是在给定一条线段之下构造出这样的一

个图形。

图 G-1

这个推理很简单。从图 G-1 给

定的线段 AB 开始, 在公设 3 的允

许下, 我们以 A 为圆心, 以 AB 长

为半径构造一个圆。然后, 用相同

的公设, 以 B 为圆心, 以 AB 长为

半径构造另一个圆。设 C 是这两

个圆弧的交点 (对于这样的交点的

存在性参考本章的注释)。[5]根据公

设 1 我们画线 AC 和 BC, 形成 4ABC。在这个三角形中, AB 和 AC

有相同的长度, 因为它们是第一个圆的半径; 而 AB 和 BC 也有相同

的长度, 因为它们是第二个圆的半径。因为同时等于相同事物的事物

彼此相等, 所以这三条边相等。根据欧几里得的定义,这个三角形是等

边三角形, 证明完毕。

这里,重要的是观察利用圆规这样画图时,欧几里得根本不需要直

挺挺地移动它。当画出每条弧后,圆规可以坏掉而丝毫不会影响证明。

但是在卷 I 接下来的两个命题中, 欧几里得展示了如何使用一支

折叠起来的圆规来移动一个长度。这表明已有的公设已经暗含了长度

移动。以此为目的的新公设已经成为不需要的包袱, 欧几里得足够聪

明, 他认识到了这一点。

他的证明相当巧妙,在这里我们把他的两个命题的推理合成一个。

假设我们有如图 G-2 所示的线段 AB, 希望把它的长度移动到发自 C

点的线段 CD 上。
①
首先,使用直尺并运用公设 1画出连结 B 和 C 的

① 图 G-2 画的比较特别, 看起来 AB 和 BF 以及 CD 和 CE 在一条直线上, 这对

下面证明的理解可能会产生不必要的误解。建议读者重新绘制该图, 让 AB 更偏右

而 CD 更偏左一些, 或者把点 E 画在 B 和 C 的上方。——译者注
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线段。然后在线段 BC 上画等边三角形 BCE;当然这种画图的合法性

正是前面的命题所确立的东西。

图 G-2

然后, 我们开始画一系列圆。以 B 为圆心, AB 为半径构造一个

圆, 在 F 点与 BE 相交 (假设当我们把圆规拿离纸面时, 它可以折叠

起来)。以 E 为圆心, 以 EF 为半径画圆, 在 G 点与 CE 相交 (同样,

当我们把圆规从纸上拿起来的时候, 它可以折叠起来)。以 C 为圆心,

CG 为半径画最后一个圆, 在 H 点与 CD 相交。欧几里得的公设 3 允

许画这些图形, 不需要不能折叠的圆规。

现在, 我们只是生成一系列等式 (为了表记方便, 我们把线段 XY

的长度记为 XY )：

AB = BF 因为它们是同一个圆的半径

= BE − EF

= BE − EG 因为 EF 和 EC 是同一个圆的半径

= CE − EG 因为 4BCE 的三条边有相同的长度

= CG

= CH 还是因为是同一个圆的半径

这条等式链的头部和尾部表明 AB = CH。因此, AB 的最初长度已如

所需那样移到线段 CD 上, 我们还是不必拿起圆规并且直挺挺地移动
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它。

从这个证明我们可以得到一个令人惊讶的结论, 那就是一个似乎

需要不能折叠的圆规来做的画图, 实际上可以用一支能够折叠的圆规

来实现。当欧几里得随后展开他的几何时, 他之所以能够合理地把一

个长度从一个地方移动到另一个地方, 就像用了一个不能折叠的圆规

一样,他的理论基础就是刚刚证明的定理。因为他如此早地、如此简单

地得到它, 他才能从此自由地使用它。

此时, 某些读者也许沉闷地打着哈欠, 认为整个事件太乱太无意

义。毕竟, 每一个人都知道, 文具店所卖的廉价金属圆规都可以让其保

持张开, 不会给欧几里得引入一个能够达到那样效果的公设造成太大

的打击。

我们认为这个立场的追随者还是没有真正领会正规的希腊几何的

精髓。第一, 现实中不能折叠的圆规并没有对理想概念的发展产生影

响。第二, 当时文具店还没有发明出来。第三, 也是最关键的, 欧几里

得也许不想把这个不必要的公设加入到他的公设列表中。为什么还要

假设可以从其他假设得到的东西呢？这会令他的公设不够纯净、不够

简化、不够完美,因此触犯了美学而非数学的基本原则。对希腊数学家

来说, 美学上的各种思考至关重要,这一点是显而易见的。在上面的欧

几里得的证明中, 我们就会体会到艾弗�托马斯写下下面这段话时的

意思了：

不可能不给现代数学家留下深刻印象的 (一个) 特征就是这位伟

大的希腊几何学家的著作形式是如此完美。在各个命题的证明中以及

在各卷的命题分布中,都同样可以发现这样的完美形式,它是帕台农神

庙和萨福克勒斯的戏剧展现给我们的同样天才的另外一种表现; 在欧

几里得的《几何原本》中, 这种形式上的完美也许达到了极至。[6]

现在,我们再深入看一看卷 1,去寻找一下欧几里得是个天才的进

一步证据。在关于那支可折叠的圆规的命题 2 和命题 3 之后, 欧几里

得设置命题 4 为证明所谓的边–角–边或 SAS 全等法则。那就是 (参见

图 G-3), 如果我们有三角形 ABC 和 DEF , 且 AB = DE, AC = DF ,
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且夹角 α = δ, 那么这两个三角形全等, 也就是说它们有完全相同的大

小和形状。换句话说, 如果拿起 4DEF 放在 4ABC 上, 则这两个三

角形将完全吻合, 线对线, 角对角, 点对点。

图 G-3

在欧几里得的手中, 三角形全等是证明几何命题的关键。后来, 他

在命题 8和命题 26中又分别给出了三角形全等模式边–边–边 (或 SSS)

和角–边–角 (或 ASA) 以及角–角–边 (或 AAS)。

卷 1的命题 5证明了等腰三角形的底角相等。正如前面提到的那

样, 这个结果应该归功于泰利斯, 但是在《几何原本》中的证明却可能

是欧几里得自己的。[7] 虽然在这里我们不给出这个证明, 但是我们要

提及它是借助图 G-4 中的图示完成的。这个图像一座桥梁式结构 (至

少对那些想象力丰富的人来说),可能就是把命题 5称为笨人难过的桥

或者驴桥定理的原因。据传说, 愚人, 或者说驴, 觉得他们无法理解这

个证明,因此他们无法跨过这座逻辑桥而进入到《几何原本》所带来的

几何。

如果把智力弱的学生比作驴的话, 欧几里得自己也因为他的命题

20的证明在伊壁鸠鲁派的面前遭到了相同的命运。看一下这是为什么,

首先我们必须描述一下卷 1 中几个中间的定理。

跨过了这座笨人难过的桥之后, 欧几里得展示了如何二分角以及

利用圆规和直尺画垂线的方法, 这之后就是卷 1 的一个关键定理, 通

常称其为外角定理。这一结果就是命题 16, 它保证任意三角形的一个

外角一定大于对角和内角。即 (参见图 G-5),如果我们从 4ABC 开始,
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向右延长 BC 到 D, 那么角 α 和 β 都小于角 ∠ACD。

这个外角定理是《几何原本》中出现的第一个几何不等式。之前

欧几里得证明了边或角是相等的 (如在笨人难过的桥中), 这里他证明

了某些角是不相等的。在卷 1 的后半部分, 这个定理担任非常重要的

角色。

图 G-4 图 G-5

它还给我们带来了另一个不等式, 即命题 19, 它的图示如图 G-6。

欧几里得的陈述是“在任意三角形中, 大角一定对着大边”, 用现代记

法描述就是下面的命题。

命题 19 在 4ABC 中, 如果 β > α, 则 AC > BC(即 b > a)。

证明 这里, 我们假设 β > α。我们的工作是要证明 ∠ABC 的对边

AC 大于 ∠BAC 的对边 BC。

图 G-6

欧几里得分别考虑了三种情况：b = a, b < a 及 b > a。他的策略
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是要证明前两种情况不可能,因此得出第三种情况一定成立的结论,如

定理所断言的那样。这样的技巧称为双归谬法,或者双否定证明。这种

强大的逻辑策略在希腊数学中应用得最好, 无处可比。下面就给出欧

几里得的具体证明。

情况 1 假设 b = a

根据图 G-6, 我们有 BC = a = b = AC。这表明 4ABC 是等腰三

角形,所以引用笨人难过的桥定理,我们得到这个三角形的底角是相等

的。即 ∠BAC = ∠ABC, 或者等价地有 α = β。但是这与最初的假设

β > α 矛盾。因此我们舍去不可能的情况 1。

情况 2 假设 b < a。

这里,我们在图 G-7中描绘了这种情况。因为假设 AC 比 BC 短,

因此我们可以画出长度为 b 的线段 CD, 其中 D 落在长边 BC 上。然

后画出 AD 形成 4ADC。这个三角形有两条边的长度等于 b, 因此它

是等腰三角形, 从而有相等的底角 ∠DAC 和 ∠ADC。对狭长 4ABD

运用外角定理, 我们得到

β = 内角 ∠ABD

< 外角 ∠ADC 根据外角定理

=∠DAC 因为 4DAC 是等腰三角形

< ∠BAC 因为整体大于部分

=α

换句话说, β ＜ α, 这与定理最初的条件 β ＞ α 矛盾。情况 2 导出一

个矛盾, 因此也失败。我们只有情况 3 了。

图 G-7
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情况 3 b > a。

它一定是真的, 因为没有其他的选择, 因此定理证毕。 ¥
现在, 我们已经触及令伊壁鸠鲁学派的哲学家们感到无比困扰的

这个命题。表面上, 它看起来没有什么可恶之处。

命题 20 在任意三角形中, 任意选取的两条边合在一起大于剩余的

一条边。

为什么争论？为什么嘲笑？我们引用评论家普罗克洛斯的话：

伊壁鸠鲁学派常常嘲笑这个定理, 说甚至对驴来说它都是显然的,

无需证明;他们说,这就是无知的人的标志,显而易见的真理非要解释,

却死心塌地相信那些深奥难懂的东西 · · · · · · 驴是通过下面的观察得到
现在这个定理的,即如果把草料放在这条边的一个末端,要吃草的驴会

沿着这条边走而不会取道那两条边。[8]

总之, 甚至连不会说话的动物都知道在图 G-8 中取从 C 到 B 的

直线路径, 而不是绕过 A 走一条长路径。因此伊壁鸠鲁学派问, 为什

么欧几里得要费事地去证明如此非常明显的事情？普罗克洛斯给出了

答案：

应该说,虽然从感觉上这个定理是显然正确的,但是对于科学思考

来说它还不清楚。很多事情都有这样的特征, 例如, 火能加热。感觉到

这点很简单, 但是弄明白它怎么加热正是科学的任务。[9]

图 G-8

本着欧几里得的精神,也就是典型希腊几何的精神,我们必须利用

我们的推理才能论证驴通过本能所知道的东西。甚至一个表面看似自

明的命题也需要证明, 这是欧几里得非常愿意为之的事情。以前面的
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结果为基础, 他进行如下推理。

命题 20 在 4ABC 中, AC + AB > BC(即 b + c > a)。

证明 在图 G-9 中, 延长边 BA 到 D 使得 AD = AC = b, 因此

BD = b + c。这种构造产生 4DAC, 这是一个等腰三角形, 因为它有

两条长度为 b 的边。考虑大三角形 4BDC, 我们注意到

∠BCD > ∠ACD 因为整体大于部分

=∠BDC 因为二者是等腰三角形 4DAC 的底角

所以 ∠BCD 大于 ∠BDC。正如欧几里得刚证明的那样, 较大的边对

应着较大的角, 这导致 BD > BC; 换句话说, b + c > a, 这显然就是要

证明的。 ¥

图 G-9

这是一个了不起的小证明：精妙, 巧妙地运用不等式, 相当简练。

在柯南道尔 (Arthur Conan Doyle) 先生的《血字研究》中, 沃森

(Watson) 博士用下面这段话描述了福尔摩斯的推理威力：“他的结论

就如很多欧几里得的命题一样可靠。”[10] 沃森不是唯一高度评价希腊

几何学家的人。多个世纪之前, 阿拉伯学者格弗兑 (al-Qift̄i) 就这样评

价欧几里得,“没有人, 将来也不会有人能够突破他, ”[11] 举世无双的

艾伯特�爱因斯坦也说出了他的赞美之词：“如果欧几里得没有点燃你

那年轻的热情, 那么你天生就不是一个科学思想家。”[12]

当然,我们上面所讨论的只是冰山一角,只是历史学家莫里斯�克

兰 (Morris Kline)所称的希腊人的“丰盛的逻辑训练”的一个样例。[13]

现在, 我们必须离开它们。但是在某种意义上, 没有数学家能够超越古

典几何学家所留下的遗产。他们开辟描述式数学,磨快逻辑工具, 把它

用于数学历史进程的各个方面。我们以 20 世纪英国数学家哈代 (G.
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H. Hardy) 的话结束本章：“希腊人⋯⋯讲的是现代数学家能够理解的

语言,正如利特尔伍德 (Littlewood)曾经对我说的那样,他们不是聪明

的学生或者‘奖学金候选人’, 而是‘另一个学院的研究生’。”[14]

当哈代说“希腊数学是极品”时, 没有人与他争执。
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本章只有一个目标：证明毕达哥拉斯定理,一个关于直角三角形的

非常重要的结果,它使得数学家少走了好几个世纪的弯路。这个定理肯

定是整个数学中最伟大的定理之一。如果我们把伟大的标准定位为一

个定理引以为傲的不同的证明方法的数量的话, 那么毕达哥拉斯定理

会毫不费力地取胜,因为已经有了几百个证明方法证明它是正确的。20

世纪初, 一个名叫伊利沙�斯科特�卢米斯 (Elisha Scott Loomis) 的

教授在一本稍显怪异的书《毕达哥拉斯命题》[1] 中收集并发表了 367

个证明。卢米斯把这些证明分为代数的、几何的、动态的或四元数的

等类别, 诚然其中有些证明之间只是略微不同, 而且有些凑数的嫌疑,

但是这些证明的存在明确了一点：从古到今这个定理一直萦绕在数学

家的脑海之中。

我们既没有篇幅也没有意愿展示这几百个证明, 但是至少要讨论

几个毕达哥拉斯定理证明。我们要讨论三个证明：一个是古代中国人

给出的论证, 一个是 17 世纪英国数学家约翰�沃利斯 (John Wallis)

推广的证明, 还有一个是美国政治家和后来的总统詹姆斯�加菲尔德

于 1876 年发现的证明。我们希望这些证明可以展示数学家们从不同

角度处理相同问题时所表现出的机智。
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首先, 我们应该陈述一下这个定理。用现代的形式说, 它是：如果

ABC 是如图 H-1 所示的直角三角形, 那么 c2 = a2 + b2, 其中 a, b, c 是

三条边的长度。在我们的三角形中, AC 和 BC 称为直角边, 而 AB 是

直角的对边, 称为斜边。

如刚才所说的那样, 这是现代版本的毕达哥拉斯定理。对于那些

对希腊数学不熟悉的人来说, 当他们了解到在古代人们认识它的方式

完全不同时,会非常惊讶。希腊人没有代数符号,没有公式,没有指数。

他们对等式 c2 = a2 + b2 也许根本就不知道。

是的, 对于希腊人, 毕达哥拉斯定理是关于正方形面积的描述, 而

这里, 正方形是用文字描述的二维四边形。从直角三角形 ABC 开始,

如图 H-2 所示, 他们在斜边和直角边上画出正方形。这个定理描述的

是斜边上正方形的面积正好等于直角边上正方形面积的和。它相当了

不起, 而且把一个正方形的面积出人意料地转换成两个小正方形的面

积。

图 H-1 图 H-2

无论从代数上看,还是从几何上看,这个定理都是数学中最重要的

定理。但是如何证明它呢？我们先从中国人的证明开始。

中国人的证明

这是证明这个定理的最自然的方法之一。事实上, 很多人认为这

是毕达哥拉斯本人在公元前 6 世纪证明这个结果的方法。坦白地说,
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有人怀疑毕达哥拉斯是如何证明这个定理的, 也有人怀疑毕达哥拉斯

是否证明过这个定理, 还有人怀疑毕达哥拉斯这个人是否存在。这类

问题属于对遥远过去的半神话式人物研究的问题。

毕达哥拉斯的著作没有留下什

么, 中国人却实实在在地留下了他

们的推理明证。这一证明出现在

《周髀算经》之中, 这是一本可以追

溯到 1000年前的汉代的教科书。显

然, 中国人从边长为 3, 4, 5 的直角

三角形获知这个定理, 因为他们有

一个名叫弦图的图表, 该图表描绘

了一个正方形, 其内有一个斜着的

正方形, 如图 H-3 所示。[2]
图 H-3

这个图表的确没有附带欧几里得可能给出的公理式证明, 也没有

附带对所有直角三角形所陈述的毕达哥拉斯关系的一般论证。我们的

确根本没有找到证明。但是, 弦图所蕴含的思想却足以建立毕达哥拉

斯定理。

还需要两个先决条件。一是我们在第 G章中提到的边角边即 SAS

全等法则。二是一个著名定理, 即三角形三个角的大小之和等于两个

直角,按照现在的说法就是 180◦。因此,通过简单的观察就可以知道直

角三角形两个锐角之和一定等于 90◦。

有了这些适当的基本条件之后,我们就开始论证。设 4ABC 是如

图 H-4 所示的直角三角形, 模仿中国人的图表, 画出一个边长为 a + b

的正方形 (数一下图内的各部分, 你会看到对于 3-4-5 的直角三角形,

中国人的正方形的每一条边的长度是 3 + 4 = 7)。然后, 在大正方形中

画出 BD, DE 和 EA, 构成一个有四条倾斜的边的图形。这是弦图的

一般化版本。

在这个大正方形的每一个角处的图形都是直角三角形, 这些直角

三角形都由长度为 a 和 b 的边包围直角, 根据 SAS 它们全等。因此
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它们所有部分都是相等的, 所以它们的四个斜边相等, 即 BD = DE =

EA = AB = c, 它们的角的大小为 α 和 β。

图 H-4

现在,我们断定四边形 BDEA是正方形。我们刚才已经发现它的

四条边的长度都是 c,所以余下的就是确定它的角。例如,考虑 ∠ABD。

因为 CF 是一条直线, 通过我们标识的直角三角形的锐角, 我们知道

180◦ = ∠CBA + ∠ABD + ∠DBF = β + ∠ABD + α = 90◦ + ∠ABD

于是有
∠ABD = 180◦ − 90◦ = 90◦

因此,这个内部图形的这个角是一个直角。对其他三个角我们可以利用

同样的推理, 所以四边形 BDEA 的四条边相等且四个内角是直角, 所

以它是正方形。如同任意正方形一样,它的面积是它的底和高的积：c×
c = c2。

从这里出发容易得出下面的结论。外面边长为 a + b 的大正方形

的面积是 (a + b)2 = a2 + 2ab + c2。但是, 外面这个正方形可以分解成

五个部分,四个全等的直角三角形和内部倾斜着的正方形,所以它的面

积是

4×面积(4ABC) +面积(正方形BDEA) = 4
(

1
2
ab

)
+ c2 = 2ab + c2

我们使这两个面积相等, 得到

a2 + 2ab + b2 = 2ab + c2
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而消掉两边的 2ab 得到下面所需的结果：

a2 + b2 = c2

中国人的证明展示了我们曾在欧拉那章所见到的数学智慧的珍

宝：从两个不同的方向同时逼近相同目标的这种方法的威力, 在上面

的证明中就是从两个不同方向逼近大正方形的面积。这样的方法呈现

出的前景是单一视点所无法比拟的。对中国人的证明融会贯通的人不

久又会对知识如饥似渴。

相似证明

毕达哥拉斯定理的这个证明被认为是所有证明中最短、最简单的

证明之一, 归功于英国数学家约翰�沃利斯 (1616―1703), 但是它肯定

更古老些。表面上看, 刚才的评价是准确的, 因为这一推理从开始到结

束只用了几行。但是, 这一证明依赖于相似三角形的概念, 要全面展开

这个概念还需要大量的基础工作。直到《几何原本》第五卷时欧几里

得才引入相似的概念,所以在此之前它不可能包含一个“沃利斯类型”

的证明。事实上, 他在第一卷的末尾就给出了毕达哥拉斯定理的证明。

从这个角度上讲, 欧几里得的证明比沃利斯的证明短, 离公设更近。一

个证明的长短的真正度量不仅要计入推理本身所含有的行数, 还要计

入在此之前所需的数学的行数。

还需注意的是,与前面的证明不同,这个证明不是用面积的方法处

理毕达哥拉斯定理的。没有正方形的分割和组合。取而代之的是,结论

a2 + b2 = c2 是关于长度的结果的代数推理, 而不是关于面积的结果的

几何推理。

但是, 这个相似证明是一个好证明。我们首先回想一下, 如果一个

三角形的三个角等于另外一个三角形的三个角,那么,这两个三角形相

似。因此, 相似是有造诣的垂钓人的完美武器。通俗地说, 相似三角形

是形状相同但大小不必相同的三角形, 因此一个三角形看上去像是另

一个三角形的放大。显然, 相似的条件比全等弱, 后者要求三角形有相

同的形状和相同的大小。在图 H-5中,三角形 ABC 和三角形 DEF 相

似, 而三角形 ABC 与三角形 GHI 全等。
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图 H-5

相似三角形的关键特征是它们的对应边成比例。例如, 在图 H-5

中, 如果边 AB 的长度是边 AC 的长度的三分之二, 那么边 DE 的长

度也是边 DF 的长度的三分之二。这种对应边成比例的性质就是我们

所说的“相同形状”的含义。

图 H-6

现在, 我们开始毕达哥拉斯定理的相

似证明。同前面一样,设 ABC是直角边为

a和 b, 斜边为 c的直角三角形, 且两个锐

角的大小分别为 α和 β,其中 α+β = 90◦。

从点 C 画 CD 垂直于 AB, 如图 H-6 所

示, 设 x = AD。

现在, 考虑 4ADC 的角。其中有一

个角的大小为 α; 有一个是直角; 因此余下的角 ∠ACD 的大小是 180◦

−α − 90◦ = 90◦ − α = β, 因为 α + β = 90◦。于是, 4ADC 有一个角

的大小为 α, 有一个角的大小为 β, 有一个是直角, 所以它与原来的三

角形 ABC 相似。同样, 4DCB 也与原来的三角形 ABC 相似, 因为

∠DCB = ∠ACB − ∠ACD = 90◦ − β = α。总之, 垂线 CD 把直角三

角形 ABC 分成两部分, 即 4ADC 和 4DCB, 它们较小, 都与原来的

三角形相似。

现在, 我们要引用相似图形的比例。在三角形 4ADC 和 4ABC

中, 斜边的比例等于较长的直角边的比例, 我们得出结论

AC/AD = AB/AC, 或
b

x
=

c

b
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通过交叉相乘, 从上面的结果得到 b2 = cx。

接下来,利用4CDB和4ABC的相似性,以及显然的事实DB =

AB −AD = c− x, 斜边的比例等于较短的直角边的比例, 得到：

CB/DB = AB/CB 或
a

c− x
=

c

a

交叉相乘得到 a2 = c(c− x) = c2 − cx。

最后, 把这两个交叉相乘的结果加起来, 并化简得到

a2 + b2 = (c2 − cx) + cx = c2

毕达哥拉斯定理再一次得到证明, 简短而且很可爱。

加菲尔德的梯形证明 (1876)

历届美国总统,无论他们在其他领域显示了什么样的才能,却很少

因为其数学能力而知名。没有哪位专业数学家曾经被选入白宫, 新任

总统们无视天文数字的预算赤字, 似乎连加法都无法正确计算。

然而, 历史上确实有一些美国总统拥有数学才能。乔治�华盛顿

就是一个,他是一位多才多艺的土地测量员,他用下面这段话表示对数

学的认同：

数学真理的研究使大脑习惯于接受推理的方法和正确性, 它是无

愧于理性的独特使用⋯⋯以数学和哲学证明为高级基础, 我们能够不

知不觉地导出更高级的推断和卓越的思考。[3]

这样的陈述促使华盛顿在战争中获胜,在和平中获胜,在数学家的

心中获胜。

亚伯拉罕�林肯也是一位强烈的数学倡导者。在他年轻学习法律

时,亚伯拉罕就认识到增强他的推理技巧的重要性,去学习通过合理的

逻辑推理进行证明的意义。正如后来他在自传中回忆时说的那样：

我说,“林肯, 如果你不能明白论证的意义, 那么你就不会成为律

师”; 我离开了斯普林菲尔德的一切事物, 回到父亲的家中, 一直呆在

那里, 直到我能给出手边欧几里得的六本书中的所有命题的证明。于

是, 我明白了“论证”的含义, 然后回去学我的法律。[4]
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如果林肯确实掌握了《几何原本》卷 I-VI 中 173 个命题, 这是个不小

的成就。有谁会指控诚实的亚伯在说谎呢？

我们不能漏掉尤利西斯�格兰特 (Ulysses S. Grant), 在他还是美

国西点军校的学员并梦想在此取得教师的席位时, 曾展示了这样的数

学成就。后来他回忆他年轻时的职业目标：“我的理想是通过所有课程,

然后脚踏实地地在这个学校当几年数学副教授, 再在某个有声望的学

院取得终身数学教授的职位。”[5] 但是, 当时格兰特发现“周围的环境

总是事与愿违”。最后他进入了白宫而不是象牙塔。

尽管有这样的成就,但是没有哪位总统是数学家。因此, 为美国总

统设置的数学成就奖就毫无悬念地落到了俄亥俄州的詹姆斯�加菲尔

德的头上, 1876 年他发表了毕达哥拉斯定理的一个原创证明。

1831 年加菲尔德生于克利夫兰市附近, 在他的少年时代, 他除了

在学校学习之外, 还必须做一些零工来支持他的寡妇母亲。年轻的詹

姆斯一直是一名优秀的学生, 他在进入马萨诸塞州的威廉姆斯学院之

前, 先后在俄亥俄州的西储中学和希拉姆学院学习, 1856 年他从威廉

姆斯学院毕业。拥有新近得到的学位, 加菲尔德回到希拉姆学院教数

学, 似乎预示着一个静静的学术人生。

但是,当时在美国没有安静的日子,因为这个国家已站在内战一触

及发的边缘。在热情高涨的脱离联邦和奴隶制的论战中, 1859 年詹姆

斯�加菲尔德被选入俄亥俄州参议院。由于政治上的激进和强烈的爱

国心, 他离开了学校, 在战争爆发的 1861 年加入了联邦军队。有趣的

是, 事实证明这位数学老师是一位好士兵。加菲尔德晋级很快, 最后被

任命担任约翰�罗斯克兰斯将军的参谋长。

1863 年, 加菲尔德离开美国陆军来到了美国众议院, 接下来的 17

年间作为共和党的激进派下决心对南方实施改革。正是在这段时间里,

众议院议员加菲尔德“在某些数学娱乐以及与其他数学团体的讨论过

程”中发现了他的毕达哥拉斯定理的证明, 并在一个为“教育、科学和

文学”而创办的《新英格兰教育日志》的期刊上发表了这一证明。

1880 年, 詹姆斯�加菲尔德获得了共和党的总统提名, 而且在那
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年秋天的竞选中勉强击败了另一名内战英雄, 即民主党人温菲尔德�

斯科特�汉考克。1881 年 3 月他任职的时候, 我们的数学家总统承诺

改善全美的教育机会, 因为“它是那些活着为了使其后代接受教育并

通过智慧和美德为他们留下遗产的人的至高特权和神圣职责”。[7]

但是这句承诺就是他任期的全部, 在任职不到四个月的 1881 年 7

月 2 日, 正当他在华盛顿搭乘火车时, 遭到一位因谋求官职而心怀不

满的人枪杀。尽管今天的医疗技术也许可以挽救加菲尔德的生命, 但

是这次枪伤最终威胁着这位总统的生命, 一直拖到九月中旬死神才降

临到他的头上。

詹姆斯�加菲尔德

(穆伦堡学院图书馆惠允)
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在举国悲伤的日子里,这个民族把很多城镇、街道、学校和孩子都

以他们这位倒下的领袖的名字命名。在克利夫兰建起一个令人印象深

刻的坟墓, 有数以千计的游客前来表达他们的尊敬。在政治上, 带着没

有实现的最伟大的梦想终结了他的一生。但是在数学上, 他却留下了

印记。

为了理解加菲尔德的证明, 需要两个必要的预备知识。其一是著

名的角–边–角全等法则,或者 ASA,它说的是,如果一个三角形的两个

角以及这两个角所夹的边分别等于另一个三角形的两个角和这两个角

所夹的边, 那么这两个三角形相等。其二是梯形的面积公式。当然, 所

谓梯形, 就是有一组对边平行的四边形。求它的面积也不难,因为一条

对角线把这个梯形分成有相同高度的一对三角形。

因此, 在图 H-7 中我们有梯形 ACDE, 两条边 AC 和 DE 相互平

行且它们的长度分别为 b1 和 b2, 高为 h, 它是这两条平行边之间的垂

直距离。对角线 CE 把这个图形分成两个三角形, 于是有

面积 (梯形) =面积(4ACE) +面积(4CED)

=
1
2
b1h +

1
2
b2h =

1
2
h(b1 + b2)

换句话说, 梯形面积是它的高与它的底之和的积的一半。

现在我们考虑加菲尔德的证明 (在图 H-8 的示意图中, 我们改变

了方向并重新标号)。如往常一样, 从直角三角形 ABC 开始, 角 C 为

直角, 直角边是 a 和 b, 斜边是 c。从 B 点作 BE 垂直于 AB, 且 BE

的长度为 c, 从 E 点向下垂直地画 ED, 其中点 D 是垂线与边 CB 向

右延长线的交点。最后, 画 AE。

跟随加菲尔德, 我们看一下这些图形的结果。首先, 因为 α + β =

90◦, 显然有

∠DBE = 180◦ − ∠ABE − ∠CBA = 180◦ − 90◦ − β = 90◦ − β = α.

因为 ∠DBE = α 且 ∠BDE 是直角, 因此有 ∠BED = β。因此, 根

据 ASA 全等法则, 4BED 和 4ABC 全等, 其中相等的边是 BE 和
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AB。从全等关系, 我们得出对应边是相等的：BD = AC = b 及 DE =

BC = a。

图 H-7 图 H-8

进一步, 四边形 ACDE 是梯形, 因为它的对边 AC 和 DE 相互

平行, 且它们垂直于 CD。因此, 加菲尔德要做的事情就变得显而易见

了,我们可以用两种不同的方法求梯形 ACDE 的面积。根据上面给出

的梯形面积公式, 我们知道

面积(梯形ACDE) =
1
2
h(b1 + b2) =

1
2
(b + a)(b + a)

因为平行的底边长度分别是 b1 = AC = b, b2 = DE = a, 这两条平行

边之间的垂直距离 h = CD = BD + BC = b + a。

另一方面, 梯形 ACDE 的面积是组成它的三个直角三角形的面

积和：

面积(梯形ACDE) =面积(4ACB)+面积(4ABE)+面积(4BDE)

=
1
2
ab +

1
2
c2 +

1
2
ab = ab +

1
2
c2

最后, 把梯形面积的这两个表达式等同起来, 并做一些代数处理：

1
2
(b + a)(b + a) = ab +

1
2
c2 → 1

2
(b2 + 2ab + a2) = ab +

1
2
c2

把上式两边乘 2, 我们得到 b2 + 2ab + a2 = 2ab + c2 , 消掉 2ab 就得到

想要的结果：

a2 + b2 = c2
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加菲尔德的证明的确非常巧妙。在这里我们再一次看到从不同视

点看整个梯形面积所带来的好处。正如《新英格兰教育日志》的这篇

文章的作者幽默地评论的那样：“我们觉得它有点像两个议院的成员能

够毫无党派差异地统一起来。”[8]

图 H-9

然而, 加菲尔德的图示也有一

些眼熟的东西。读者也许注意到,如

果我们以线段 AE 为轴做加菲尔德

图示的镜像来把这个图放大, 我们

就发现我们注视的正是中国人的证

明中的弦图 (参见图 H-9)。加菲尔

德偶然发现了这个古代证明的一个

变形。

到此, 我们给出了毕达哥拉斯

定理的三种证明, (我们希望) 这足

以使甚至最顽固的怀疑者都相信

它。当然,你也许怀疑用不同方式证明同一个结果的必要性。这些额外

的证明不是多余吗？

从实际的意义上看,它们是多余的。多次证实同一个定理没有逻辑

必要性。但是重复揭示同一个主题有一种美学上的动力。正像不应该

因为有人曾经写过一首情歌而阻止其他歌曲作者做同样的事情一样,

因为曲调变了, 歌词也修改了, 而且节奏也调整了。同样, 毕达哥拉斯

定理的这些证明揭示了不同的数学曲调和节奏, 并不会因为它们描述

的是一个老话题而失去美感。

也许应该对毕达哥拉斯定理的逆命题说几句话。逆命题是一个有

精确含义的逻辑术语。如果我们开始的陈述是,“如果 A,那么 B”,交

换条件和结论后, 我们得到一个相关的命题,“如果 B, 那么 A ”。后

面这个命题是原来命题的逆命题;原来的假设变成逆命题的结论,反之

亦然。

稍加思索后就会明白一个命题可以为真, 它的逆命题也同样可以
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为真。例如, 这样的一个陈述,“如果一个三角形三条边相等, 那么它

的三个角也相等”, 它的逆命题是“如果一个三角形的三个角相等, 那

么它的三条边也相等”, 显然这二者都是成立的几何定理。

另一方面, 一个命题可能是真的, 但是它的逆命题却是假的。命题

“如果雷克斯是一条狗, 那么雷克斯是一个哺乳动物”是成立的, 正如

所有动物学家都认可的那样。但是,它的逆命题“如果雷克斯是一个哺

乳动物,那么雷克期是一条狗”显然是错误的, 正如雷克斯大叔指出的

那样。

毕达哥拉斯定理的逆命题是：

如果 c2 = a2 + b2, 那么 4ABC 是直角三角形。

这个逆命题是成立的,欧几里得已经在《几何原本》第一卷作为最后一

个命题给出了证明。他的证明是希腊几何如此辉煌的另一个例子。它

确立了一个三角形是直角三角形当且仅当斜边上的正方形是其他两个

边上的正方形之和。这给出了直角三角形的一个完备的特性, 几何学

家再没有发挥的余地了。

我们对毕达哥拉斯定理的讨论就要结束了 (我们强调, 有强烈好

奇心的人可以去卢米斯的书中找到另外 364个证明)。然而这如同潮水

般的大量的不同证明也无法淹没这个伟大定理的重要性。因为, 尽管

人们反复地证明它, 毕达哥拉斯定理总是保持着它的优美, 它的清新,

还有它那种永恒不灭的神秘感。
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根据古典神话, 迦太基女王狄多的杀人犯弟弟皮格马利翁是泰尔

君王, 这位女王逃离了她的家乡, 在随从的陪同下航海到了地中海, 并

在非洲北岸登陆。在《埃涅伊德》中, 维吉尔告诉我们：

他们在这里买了土地; 并把它叫做毕尔萨山,

这个词的意思是公牛皮; 他们只是买了

一张公牛皮能覆盖的土地。[1]

也就是说, 狄多为建造新城而要求得到的土地被局限在用一张公牛皮

所能围起来的一块区域。

狄多非常聪明, 她首先把这张牛皮剪成许多长而窄的带子。甚至

更聪明地,她把这些生牛皮带弄成一个大大的半圆形状,它的直径有整

个海岸那么长。在这样大的区域上建造起迦太基城。

在这个虚幻的故事中出现了两个完全是现实现象的神话式源头。

其一是迦太基的创建, 这是威风凛凛地操纵着整个地中海地区的一个

城邦, 在公元前 264 年到公元前 146 年之间, 与同样强大的罗马发生

了三次迦太基战争, 在向意大利发起的一次几乎不可能的侧翼攻击中,

汉尼拔的大象翻越了阿尔卑斯山, 为军事史学家提供了素材。沿突尼

斯海岸的众多遗迹是迦太基城保留到今天的所有东西, 这是它的敌人
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罗马给它带来的灾难的见证。

而狄多的故事还提供了一个著名的数学问题的神秘源头。如何配

置固定的周长 (牛皮带)使得沿海岸围出的面积最大？狄多说半圆就可

以完成这样的工作, 因而给我们遗留下有时称为狄多问题的问题。

当然, 数学家不愿意把结果归结于神秘的生物, 而且他们也不喜

欢需要公牛皮的问题。所以, 今天习惯于把这个问题称为等周问题

(isoperimetric, iso=same, perimetric=boundary), 其形式陈述如下：

在有相同周长的所有曲线中, 确定能围出最大面积的一条曲线。

这是一个绝妙的挑战。它给希腊几何学家带来了一场严峻的考验, 并

在 2000 年后再次浮出水面, 考验了微积分这一新兴学科。

用相同的周长围出不同的面积似乎有点荒谬。普罗克洛斯观察到

他的很多同时代人对此知之甚少。我们已经在第 G 章遇到过这个人,

他反驳伊壁鸠鲁学派的嘲笑而替欧几里得辩护。普罗克洛斯说, 他们

认为图形的周长越大,围在里面的面积就越大。当然, 有时候这是正确

的, 图 I-1 中的两个正方形：左边的正方形的周长是 4, 面积是 1, 而右

边的正方形有更大的周长 (12), 且有更大的面积 (9)。

图 I-1

但是, 正如普罗克洛斯观察的那样, 这样的关系不是必然的。图

I-2 中左边的四边形由相邻的两个边长为 3-4-5 的直角三角形构成, 其

中每一个直角三角形的面积是 1/2bh=1/2(4×3)=6。它的周长是 18,而
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面积是 6+6=12。右边的正方形有更小的周长 (16),但是却有更大的面

积 (16)。

图 I-2

因此, 我们不敢通过比较周长来比较面积,普罗克洛斯在嘲笑“提

出根据围墙的长度计算城市的大小的地理学家”时已经清楚地解释了

这一点, 还有, 当他描述那些肆无忌惮的土地投机商把有更大周长 (但

有更小的面积) 与有更小周长 (但有更大面积) 的土地交换, 却“因非

常诚实而赢得了声望”的时候, 也清楚地解释了这一点。[2]

增大一个图形的周长不一定能增大其内部的面积。但是, 如果有

一个固定的周长时, 我们如何知道它所围起来的面积是多少呢？

为了使这个问题具体化, 想象我们有一条指定长度的绳子, 比如

说是 600英尺,我们希望用某种方法用它围出一个图形使其面积最大。

显然, 摆置这条绳子可以围出很多不同的面积。一个尺度为 1×299 的

长而窄的矩形的周长是 600 英尺, 而面积为 299 平方英尺, 而稍胖点

的尺度为 100×200 的矩形同样有 600 英尺的周长, 而此时围成了更大

的面积, 即 20 000 平方英尺 (参看图 I-3)。

在所有有相同周长的矩形中, 围成面积最大者是正方形。利用第

D 章的微分学的取极大值的技巧可以很容易证明这个结论, 但在此我

们要给出一个更初等的推理。

假设我们有固定周长, 根据这个周长我们作一个边长为 x 的正方

形,如图 I-4所示,它围成的面积显然是 x2。如果我们通过把水平边加

长到 x + a 从而把这个正方形变成矩形, 我们必须同时把垂直边减少

到 x− a, 才能保证这个周长不变。因此, 这个矩形的面积将是
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(x + a)(x− a) = x2 − a2

这个值显然小于 x2。换句话说, 一个有固定周长的非正方形的矩形所

围成的面积比有相同周长的正方形所围成的面积少 a2。

图 I-3

图 I-4

大约公元前 200 年, 希腊数学家芝诺多罗斯 (Zenodorus) 利用纯

几何思想证明了这个原理。他的原创著作都没有保存下来, 所以我们

对他的了解都是通过其他作者对他的引用所获得的。后来的这些评论

家记录到, 芝诺多罗斯写了一篇《论等周图形》的论文, 在这篇论文中

出现了很多重要的结果。

例如,芝诺多罗斯证明,在有相同边数的多边形 (如第 C章介绍的

那样) 当中, 正多边形围起来的面积最大。[3] 因此, 等边三角形围起来

的面积比与其有相同周长的任何其他三角形围起来的面积大, 正方形

的面积比与其有相同周长的其他四边形的面积都大。这个一般定理的
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证明却不是很简单。

但是, 等周的挑战不只局限于三角形和矩形。事实上, 如果我们把

600英尺长的绳子弯成一个正六边形, 每一条边是 100英尺长, 它的面

积甚至比正方形的面积还大 (参见图 I-5)。这个事实的证明如下。

设 O 是边长为 100 英尺的正

六边形的中心, h 是从 O 点向这个

六边形的边所作的垂线的长度 (正

如我们在第 C 章中提到的那样, h

称为这个正多边形的边心距)。初

等几何显示, 边心距垂直且平分边

AB, 使得 AD = 50, OA = OB =

AB = 100 英尺。对直角三角形

ODA应用毕达哥拉斯定理,我们看

到 1002=502 + h2, 所以
图 I-5

h =
√

1002 − 502 =
√

7 500 (英尺)

因此 4OAB 的面积是

1
2
bh =

1
2
× 100×

√
7 500 = 50

√
7 500 (平方英尺)

因此整个正六边形的面积是这个面积的六倍,即 300
√

7 500 ≈ 25 980.76

平方英尺。这个值显然超过了有相同周长的正方形的面积 20 000平方

英尺。

然而, 如果我们的 600 英尺长的绳子被重新变形为一个正八边形

(每一条边长是 75英尺),它围起来的面积是 27 159.90平方英尺; 一个

正十二边形 (每条边有 50 英尺长) 围起来的面积是 27 990.38 平方英

尺 (参见图 I-6)。

这一连串的例子显示,如果周长不变但正多边形的边数增加,那么

围起来的面积也同时增加。据后来的评论家说, 芝诺多罗斯把这个原

理陈述为：
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图 I-6

有相同周长的所有直线图形中——我意指等边和等角的图形——

最大者就是有最多角的图形。[4]

他对此给出了一个证明。

此刻请允许我们一下子跳到几个世纪之后的后古典时期的数学家

帕普斯,他活跃于公元 300年左右。帕普斯写了一篇论文,描述了芝诺

多罗斯的工作并给出了前面的等周原理的一个例子。非常奇怪, 当帕

普斯突然中断他的学术研究转而去研究蜜蜂的数学才能时, 他显然格

外尊重昆虫。在一个也许是至此最拟人化的描述中, 帕普斯主张蜜蜂

“相信它们自己无疑是受上帝的委托把一份美食从上帝那里带给更文

明的人类”。[5] 因此暗示蜜蜂主要是为人类的消费而制造蜂蜜,帕普斯

提示到它们很自然地想要把蜂蜜储存起来不要浪费, 做法就是把它存

入到设置好的巢室里, 使得“不会有其他东西落入这些小洞的缝隙之

中”而因此变质。换句话说, 必须在蜂房中构造没有缝隙的巢室。

假设蜂房被造成全等的正多边形 (我们也许和帕普斯一样, 相信

蜜蜂有这样的要求), 我们要证明下面的命题。

命题 只有三种方法分配有共同顶点的全等正多边形而没有“缝隙。”

证明 作为证明这个推断的第一步,我们确定有 3条边、4条边,或更

一般地有 n 条边的正多边形的每个角的度数。

幸运的是,这个问题不难。假设我们有一个正 n边形,它的每个角

的大小为 α。(当然, n >3, 因为多边形不能有两条或更少的边。) 从它

的中心 O 开始, 我们画到顶点的线, 如图 I-7 所示, 这样把这个正多边
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形分成 n个全等的三角形。现在这个技巧是要用两种不同的方法计算

这些三角形的角度总和。

一方面,因为有 n个三角形,每

一个都是 180◦, 这个正多边形内的

三角形的角的总度数是 n×180◦。另

一方面, 再看一下这 n 个三角形的

角的总度数。它们的顶点都是点 O,

所以它们的顶角总度数就是围绕这

个点 O 旋转一圈得到的总度数, 即

360◦。同样,它们底角总数是 2n个,

每一个的度数是 α/2。因此,组成这

个多边形的这些三角形的角的总度

数是 360◦ + 2n(α/2) = 360◦ + nα。

图 I-7

令表示这些三角形的角的总度数的两个不同表达式相等, 求得 α：

360◦ + nα = n× 180◦

nα = n× 180◦ − 360◦

α =
n× 180◦ − 360◦

n
= 180◦ − 360◦

n

这个公式给出了正 n 边形每个内角的度数。

我们对若干特定情况运用这个公式。如果 n=3,这个正三角形 (即

等边三角形) 的每个内角是

α = 180◦ − 360◦

3
= 180◦ − 120◦ = 60◦

正如我们所知道的那样。正方形 (n=4) 的每一个角的度数是 180◦ −
360◦/4 = 180◦ − 90◦ = 90◦, 是一个直角; 正五边形 (n=5) 的每个内角

的度数是 180◦ − 360◦/5 = 180◦ − 72◦ = 108◦; 正六边形 (n=6) 的每个

角的度数是 180◦ − 360◦/6 = 120◦。

好了。现在接着考虑我们的命题, 我们尝试去分配有共同顶点的

正多边形使得不留下空间。地板砖的布局就属于这种布局, 它们完美

地放置在一起, 这样溢出的牛奶就不能从地板流下去。
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图 I-8

在正多边形之间没有缝隙

这一要求之下, 我们必须确定每

个顶点处有多少个正多边形相

遇。因此, 我们设 k 是在某个顶

点处相遇的全等的正多边形的

数量,如图 I-8所示。显然 k >3,

因为我们不可能有两个或更少

的正多边形在某个顶点相遇。

用 n 表示每个正多边形的

边数。我们刚才已经确定每个多

边形的角的大小是 180◦ − 360◦/n, 因为它们中有 k 个在某个点相遇,

所以我们看到在这个顶点处的角的总度数是 k × (180◦ − 360◦/n)。但

是在每个顶点处的角的总度数还等于 360◦。令这两个表达式相等, 得

360◦ = k ×
(

180◦ − 360◦

n

)

把上面的等式两边同时除以 360◦, 得

1 = k

(
1
2
− 1

n

)

最后, 因为我们知道 k >3, 我们可以生成下面这个重要的不等式：

1 = k

(
1
2
− 1

n

)
> 3

(
1
2
− 1

n

)
=

3
2
− 3

n

因此
3
n

> 3
2
− 1 =

1
2

交叉相乘得到 3×2> n×1, 或者化简得 n 66。

上面这个不等式限定了在某个共同顶点处分布的正多边形的种类,

因为它显示了每个多边形必须有六条或更少的边。下面我们分别研究

一下可能的情况, 示意图如图 I-9 所示。
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图 I-9

a. 如果 n=3, 那么每个多边形都是等边三角形, 每个内角都是

60◦。于是我们可以把 360◦/60◦ = 6 个等边三角形放置在每个顶点处

而使它们之间没有缝隙。因此, 对于地砖或者蜂房来说这是一个可能

的布局。

b. 如果 n=4, 每个多边形是每个内角都为 90◦ 的正方形。我们能

够很清楚地把 360◦/90◦ = 4 个正方形聚集到每个顶点处。再次, 蜜蜂

和铺设工要注意啦。

c. 如果 n=5, 我们看到此时正多边形的每个角是 108◦。但是 108◦

不能整除 360◦, 因为 360◦/108◦ = 31/3。因此在某个点处正五边形不

能充满整个空间而不留下缝隙。必须丢弃这种情况。

d. 如果 n=6, 我们得到一个正六边形。每个内角是 120◦, 所以我

们可以在每个顶点处分布 360◦/120◦ = 3 个正六边形。

因为 36 n 66,不存在其他可能情况。因此,如上面所说明的那样,

能够不留空隙的全等正多边形的分布的方法就是六个等边三角形、四

个正方形, 或者三个正六边形。

哈哈！这个证明是帕普斯的蜜蜂相当了不起的成就, 它也许令它

们的小触角颤抖好几个星期。但是, 展示如此高超的数学敏锐后, 这些

小虫子要面对最后一个问题：这三个可能的分布方案中哪一个做它们

的蜂房最好呢？

最后, 它们展示了自己对等周原理的深刻理解：在有相同数量的

蜂房 (周长相同) 的条件下, 为了储存最多的蜂蜜 (即有一个最大的横

切面积), 它们选择了边数最多的正多边形, 即正六边形！毫无疑问, 正

如所有昆虫学家所肯定的那样, 蜜蜂的确做的是六边形的蜂房。帕普
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斯写道：“蜜蜂的确知道正六边形比正方形和三角形都大, 这个对它们

有用, 因此, 在构造每个蜂房付出相同材料的情况下, 正六边形能够储

存最多的蜂蜜。”[6] 帕普斯把这一成就归因于蜜蜂的数学智能,这也许

已超出了大多数现代大学的毕业要求。在他看来, 蜜蜂是微型的几何

学家, 他也许和它们的见解完全一致。

芝诺多罗斯的等周原理, 即对于固定的周长, 正多边形的边数越

多, 则围出的面积越大,直接导致一个著名的推论：随着正多边形边数

增加而得到的极限图形,即圆,所围出的面积大于任何有相同周长的正

多边形围出的面积。据说这个推论是芝诺多罗斯证明的。

图 I-10

关于这个结论希腊有更令人惊

讶的事情。回想一下,甚至在欧几里

得之前, 希腊人就已经把直线和圆

作为两个不可缺少的几何图形, 这

是两个利用几何工具可以构造出来

的图形。当然, 直线是两点之间的

最短距离。芝诺多罗斯证明了圆是

最大面积围绕者。由欧几里得的圆

规扫出的这个图形在给定周长的情

况下围出的面积最大。这难道不是希腊人如此赞叹这一理想图形的更

深层明示吗？

为了说明等周原理, 我们再返回到我们的 600 英尺长的绳子, 把

它弯曲成如图 I-10 所示的圆。因为圆周长是 2πr, 我们知道 600=2πr,

这表明 r = 600/(2π)。正如第 C 章中所说明的那样, 圆面积 A = πr2,

所以这个圆的面积等于

A = π

(
600
2π

)2

=
360 000

4π
=

90 000
π

≈ 28 647.89(平方英尺)

这个面积甚至大于上面所考虑的正十二边形。正如芝诺多罗斯所说的

那样, 圆比任何有相同周长的正多边形大。

那么, 为什么狄多把她的牛皮带弄成一个半圆形呢？答案是她利
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用海岸线作为她的财产的一个边界, 因此无需额外的牛皮构造出另外

一部分。在这样的条件下,半圆的确是最好的选择。如果迦太基城没有

沿海构建, 而是在内陆, 比如说在堪萨斯的什么地方, 那么狄多肯定会

把她的财产圈在圆内。

但是甚至这些著名的定理也不能完全解决等周问题, 因为我们完

全有可能不用正多边形超过圆的面积 (这是芝诺多罗斯考虑的), 而是

利用抛物线、椭圆或者其他非正则曲线 (这个是芝诺多罗斯没有考虑

到的)。因为这涉及曲线的一般性, 最终的解决方法不是由希腊数学家

完成的。正如在第 B 章中所提到的那样, 约翰�伯努利和雅各布�伯

努利开始了他们一如既往的争论, 并帮助他们创立了现在称为变分学

的一个奇妙的数学分支, 到此等周问题才得以圆满解决。

但是,甚至对于这更一般的等周问题,事实证明这个古老的答案仍

然是一个正确的答案。在有固定周长的所有曲线当中,如多边形、椭圆

和抛物线等, 圆围出的面积最大。这是一个令人惊奇的性质。

历经几个世纪, 还有少数几个重要问题仍然引起数学家们的兴趣,

仍然令数学家们感到苦恼。例如, 第 A 章的梅森数的性质仍然是一个

未解问题。正如我们将在第 T 章看到的那样, 其他一些问题, 像用圆

规和直尺三等分角等, 经过了几个世纪的努力才得以解决。等周问题

也有类似特性; 描述是如此简单, 但证明却如此困难。由于狄多和芝诺

多罗斯,以及伯努利兄弟和蜜蜂的贡献,等周问题已经在数学的经典著

作中赢得了它自己的位置。
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数学家迈克尔�阿蒂亚 (Michael Atiyah) 说：“证明是胶水, 它把

数学粘到了一起。”[1] 显然这一观点说的是证明或者论证是数学的化

身。

这样的观点可能引起争议。数学这个学科涉及的范围如此广大,它

可以包含各种活动,如估值、构造反例、测试特殊案例以及解决日常问

题等。数学家也不必每天 24 小时都在证明定理。
然而,即便理论命题的逻辑论证不是数学的全部活动,它也肯定是

这个学科的特征。数学离不开其他各个方面的学术努力, 就像它离不

开证明、推理以及逻辑演绎一样。在比较数学与逻辑的关系中,伯特兰

�罗素 (1872―1970) 断言：“已经无法在二者之间划出界线了; 事实上,

二者是一体的。”[2]

本书已经分析了很多数学论证。在第 A 章中, 我们证明了素数的

无穷性, 在第 H 章中我们证明了毕达哥拉斯定理。就一般数学论证而

言, 这些证明相当简单。其他论证却需要很多页, 很多章节, 甚至很多

卷才能得出它们的最终结论。相应的智力要求不见得适合每一个人,正

如谦逊的查尔斯�达尔文写出的下文所表明的那样：“我跟随长而且纯

粹抽象的思维轨迹的能力极其有限；因此我从来不可能在形而上学或

者数学上取得成功。”[3] 或者,用约翰�洛克 (John Locke)更简短的话
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说：“数学证明像钻石一样既坚硬又清透。”[4]

数学定理的证明到底是什么呢？这个问题并不像它看起来那样一

目了然,因为它涉及哲学、心理学和数学各方面的因素。亚里士多德对

此有深刻的理解, 他把证明描述为：“不是表面上的陈述而是内心的冥

想。”[5]

罗素也作出了令人信服的评论：数学家永远不可能把“完整的推理

过程”写到纸上, 而一定会放置“足以使那训练有素的大脑信服的证明

摘要”[6]。他想要说的就是, 任何数学陈述都是建立在另外一些陈述和

定义的基础之上的,这些陈述和定义又是建立在更多的陈述和定义的基

础之上的,因此要求证明沿着每一个逻辑步骤追踪回来也许有点鲁莽。

然而 20 世纪初, 当罗素与艾尔弗雷德�诺思�怀特海 (1861―

1947) 一起合著巨著《数学原理》时, 他似乎忘记了自己的劝告。在这

本著作中,他们尝试着把整个数学回推到基础的逻辑原理,并且在这一

过程中保留了细节。其结果是非常折磨人的。他们的展开如此周密,在

他们最终证明了 1+1=2 之前, 此书已达 362 页, 这一证明在名为“基

数算术导言”的一章的 54.43 节 (参见图 J-1)。《数学原理》使论证变

得疯狂。

图 J-1 罗素和怀特海证明 1 + 1 = 2

(摘自艾尔弗雷德�诺思�怀特海和伯特兰�罗素于 1935 年合写的《数学原理》

的第 1 卷。得到剑桥大学出版社的允许翻印。)
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在本章,我们尝试着保持头脑清醒。按照我们的意思, 证明就是在

逻辑法则的范围精心制作的推理, 对于一个论断的正确性它无懈可击,

令人信服。像“说服谁？”或者“按照谁的标准无懈可击？”等一类的问

题留作以后再议。

当然,我们也可以选择考虑什么不是证明。求助于直观、常识或者

更不好的威胁的陈述都不是论证。刑事诉讼中有罪证明中的“排除一

切疑云”也决不是我们所说的论证。数学家愿意认为,证明不仅能排除

合理的疑问, 而且能够排除所有疑问。

我们可以在许多不同的方向展开数学论证的讨论。这里, 我们给

出四个重要的基本原则, 并逐个提出阐述数学证明本质的非常有意义

的问题。

基本原则#1：个案不充分

在科学中,同样在日常生活中,当实验反复肯定某个原则之后我们

就倾向于接受它的真实性。如果肯定的案例数量足够大, 我们说我们

有了一个“被证实的法则”。

但是, 对于数学家来说, 几个案例的结果尽管可能给出一些提示,

但决不是证明。下面给出这种现象的一个例子, 考虑

猜想 把一个正整整代入到多项式 f(n) = n7−28n6+322n5−1960n4+

6769n3 − 13 132n2 + 13 069n − 5040, 我们总可以得到原来的正整数。

用符号表示就是断言：对于任意整数 n 都有 f(n) = n。

这是真的吗？显然, 我们可以代入几个整数看一看出现什么结果。

当 n=1 时, 我们得到

f(1) = 1− 28 + 322− 1960 + 6769− 13 132 + 13 069− 5040 = 1

显然断言成立。如果我们代入 n=2, 计算结果为

f(2) = 27 − 28× 26 + 322× 25 − 1960× 24 + 6769× 23 − 13 132× 22

+ 13 069× 2− 5040 = 2

这一次断言仍然成立。我们希望读者拿出计算器, 验证一下 f(3)=3,

f(4) = 4, f(5) = 5, f(6) = 6, 甚至有
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f(7) = 77 − 28× 76 + 322× 75 − 1960× 74 + 6769× 73

− 13 132× 72 + 13 069× 7− 5040 = 7

这个论断的证据似乎建立起来了。有些人, 特别是那些对这样机械式

的计算没有热情的人也许已经宣布这个陈述是真的。

但是, 它不是真的。代入 n=8 时, 我们得到

f(8) = 87 − 28× 86 + 322× 85 − 1960× 84 + 6769× 83

− 13 132× 82 + 13 069× 8− 5 040 = 5048

结果不是我们期望的 8。进一步的计算表明 f(9) = 40 329, f(10) =

181 450, f(11) = 640 811,所以此断言不仅失败了而且错得惊人。对于

n=1, 2, 3, 4, 5, 6, 7 都为真的猜测实际上却不是正确的。

我们把下面这个表达式展开并合并同类项, 就可以得到我们刚才

讨论的多项式

f(n) = n + [(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 7)]

显然, 对于 n=1, 项 (n− 1) 为零, 因此方括号中的所有乘积都为零; 因

此 f(1) = 1 + 0 = 1。如果 n=2, n − 2 = 0, 所以 f(2) = 2 + 0 = 2。类

似地, f(3) = 3 + 0 = 3,一直到 f(7) = 7 + 0 = 7。但是这之后括号里的

项不再是零, 例如 f(8) = 8 + 7! = 5048。

这提示下面这样一个富有挑战性的扩展命题。假设我们引入

g(n) = n + [(n− 1)(n− 2)(n− 3) · · · (n− 1 000 000)]

并猜测对于所有正整数 n, 有 g(n) = n。

我们做乘法且合并 g(n)的项,我们就得到一个一百万次的惊人方

程。通过与上面完全相同的推理, 我们将发现 g(1) = 1, g(2) = 2, 一直

到 g(1 000 000) = 1 000 000。

在发现了一百万个连续正确的证据之后, 任何思维正常的人都会

怀疑 g(n) 是否总是产生 n？对于任何人, 除了数学家之外, 一百万个

连续成功将等同于排除了所有值得怀疑的证明。然而, 再接下来验证

一下, g(1 000 001) 实际上等于 1 000 001+(100 000)!, 这个数非常大,

显然超过 1 000 001。
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上面这个例子强调了关于数学证明的第一个基本原则：我们必须

对所有可能的情况进行证明, 而不仅是对几百万个情况进行证明。

基本原则#2：越简单越好

数学家赞美那些巧妙的证明。但是, 数学家更赞美那些既巧妙又

经济的证明,即直击事物的要害,直击目标的那些没有多余之处的简洁

推理。这样的证明被认为是优雅的。

数学的优雅与其他创意的优雅没有什么不同。它与莫奈的油画艺

术的优雅有很多共同之处, 莫奈的油画仅用寥寥几笔或几行诗描绘法

国的风景, 而非长篇大论。在本质上优雅属于美学范畴,而不是数学的

特性。

同任何理想一样,优雅不是总能够实现的。数学家们为简短、清晰

明了的证明而奋斗,但是经常必须忍受令人讨厌的繁琐事物。例如,抽

象代数中分类有限简单群的证明用了 5000多页纸 (最终检验通过时)。

寻求优雅的那些人请另寻出路。

相比之下, 数学家达到的终极优雅是所谓“没有语言的证明”, 在

这样的证明中一个极好的令人信服的图示就传达了证明, 甚至不需要

任何解释。很难再变得比它更优雅了。

例如, 考虑下面的例子。

定理 如果 n 是正整数, 那么 1 + 2 + 3 + · · ·+ n =
1
2
n(n + 1)。

这个定理说的是,当我们把前 n个正整数相加时,和总是 n与 n+1

的积的一半。我们可以用几个特殊的数验证一下, 例如, 如果 n=6,

1 + 2 + 3 + 4 + 5 + 6 = 21 =
1
2
(6× 7)

但是我们第一个基本原则警告说, 只有傻子才会依据一个案例就匆匆

得出结论。我们要利用图 J-2 的图示去证明这个命题。

这里我们采用由一块加上两块再加上三块等等这样的阶梯式的结

构,如图 J-2阴影部分所示;把它们安置到一起就形成了 n× (n+1)的

矩形排列。因为这个矩形是由两个完全相同的阶梯组成的, 矩形的面

图灵社区会员 cindy282694 专享 尊重版权



J 论证 127

积等于它的底和高的积,即 n× (n + 1),那么这个阶梯的面积一定是矩

形面积的一半。即

1 + 2 + 3 + · · ·+ n =
1
2
n(n + 1)

证毕。 ¥

图 J-2

读者也许观察到这个“没有语言的证明”伴随着一段解释。但是,

口头的解释的确没有必要, 这个图示值千言万语。①

下面是另一个不可否认的优雅证明。假设我们从 1 开始把奇数依

次相加：
1 + 3 + 5 + 7 + 9 + 11 + 13 + · · ·

一些经验提示我们,无论我们把这个和进行到什么时候,其结果总是完

全平方。例如,

1+3+5=9 = 32

1+3+5 + 7+9 = 25 = 52

1+3+5 + 7 + 9 + 11 + 13 + 15+17+19+21 + 23 + 25+27 = 196
= 142

这永远为真吗？如果是, 我们如何证明这个一般结果？

下面的推理需要一点代数知识, 根据观察：偶数是 2 的倍数, 因

此对某个整数 n,其形式是 2n,而奇数比 2的倍数少 1,因此对某个整数

①“没有语言的证明”是《大学数学杂志》的固定专栏。
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n, 其形式是 2n− 1。

定理 从 1 开始的连续奇数之和是一个完全平方。

证明 设 S 是从 1 开始到 2n− 1 的连续奇数之和。即

S = 1 + 3 + 5 + 7 + · · ·+ (2n− 1)

显然我们可以求从 1 到 2n 为止的所有整数的和, 然后再减去偶数之

和就可以得到连数奇数之和。换句话说

S = [1+2+3+4+5 +· · ·+(2n−1) +2n]− [2 +4 +6 +8 +· · ·+2n]

= [1 +2 +3 +4 +5 +· · ·+(2n−1) +2n]− 2[1 +2 +3 +4 +· · ·+ n]

这里, 从第二个括号的表达式中我们提出了一个因子 2。

第一个方括号中是从 1 到 2n 的所有整数的和, 而第二个方括号

中是从 1 到 n 的所有整数的和。图 J-2 的“没有语言的证明”给出了

如何求这样的整数和, 所以我们两次利用那个结果：

S =
1
2
2n(2n + 1)− 2

[
1
2
n(n + 1)

]

化简上式我们得到

S = n(2n + 1)− n(n + 1) = 2n2 + n− n2 − n = n2

因此无论 n是什么值,连续奇数之和是一个完全平方 n2。证明完毕。¥
一句话, 这个证明是优雅的。但是如果它是我们寻找的那种优雅,

那么图 J-3则给出了另一个更短的证明,一个没有语言的证明。这里奇

数是一个方块,三个方块,五个方块,依次类推,按特殊方法排列。我们

从左下角的一个方块开始; 三个有阴影的方块包围着它形成一个 2×2

的正方形;五个没阴影的方块包围着这些方块形成一个 3×3的正方形;

接下来就是 7 个有阴影的方块包围着这些方块形成一个 4×4 的正方

形;依次类推。这个图示清楚地表明连续奇数的和总是产生一个 (几何

的) 平方。这个证明非常自然。早在 2000 年前希腊人就知道它了, 现

代的年轻人可以通过构建方块模仿这一证明。

温斯顿�丘吉尔 (Winston Churchill) 说：“短小的词为佳, 而既古

老又短小的词为最佳。”[7] 我们可以重新描述这个优雅推理：古老的证

明为佳, 而既古老又短小的证明为最佳。
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图 J-3

基本原则#3：反例的价值

数学中有一个非常严酷的现实：为了证明一个一般的陈述需要一

个一般的推理;但为了反驳它只需要一个特殊的例子,一个使这个陈述

失败的例子。后者称为反例, 一个好的反例价值如金。例如, 假设我们

有下面的猜测。

猜测 如果 a 和 b 是正整数, 则
√

a2 + b2 = a + b。

年复一年,数以万计的学生曾经使用过这个特殊的公式,这可以从

任何一名数学老师那里得到证实。但是这个公式是不成立的, 为了说

明这一点, 我们需要一个反例。例如, 如果 a=3, b=4, 那么
√

a2 + b2 =√
32 + 42 =

√
25 = 5, 而 a + b = 3 + 4 = 7。仅这一个反例就足以把这

个猜测送进数学的垃圾堆。

我们强调, 尽管可能需要 50 页纸的推理来证明一个定理, 但是只

要一行反例就可以反驳它。在证明和反证之间的大战中, 似乎我们没

有一个公平的竞争环境。但是,还是要说一句警告的话：寻找反例不像

看起来那样容易。下面的故事就是一个例子。

两个多世纪前, 欧拉猜测至少要把三个完全立方加起来才能得到

一个完全立方, 至少要把四个完全四次幂相加才能得到另一个完全四

次幂, 至少要把五个完全五次幂相加才能得到另一个完全五次幂, 等
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等。

作为一个例子,我们把这些完全立方相加：33 +43 +53 = 27+64+

125, 得到和 216, 它正好是 63。这里, 三个立方合并起来得到了一个立

方,但是欧拉断定并证明了两个立方之和永远不会得到一个完全立方。

读过第 F 章的读者应该意识到这是费马最后定理的特殊情况 (n=3)。

提高次数,我们能够找到四个完全四次幂,它们之和等于一个四次

幂, 例如, 考虑下面绝非一目了然的例子
304 + 1204 + 2724 + 3154 = 3534

欧拉猜测三个四次幂之和不会给出另一个四次幂,但是没有给出证明。

一般地,他说至少需要 n个 n次幂,使得它们之和等于另一个 n次幂。

1778 年这件事仍然成立, 近两个世纪后它仍然成立。信任欧拉的

人不能用证明来肯定欧拉的猜测, 但是不相信欧拉的人也不能构造出

一个特殊的反例来驳倒它。这个问题是一个未解问题。

到了 1966 年, 数学家利昂�兰德 (Leon Lander) 和托马斯�帕金

(Thomas Parkin) 发现了下面这个例子
275 + 845 + 1105 + 1335 = 61 917 364 224 = 1445

四个五次幂却产生另外一个五次幂。欧拉被驳倒了。而二十年后强大

的计算机炫耀了一下它的电子大脑的威力, 用了上百个小时寻找到下

面这个非常有力的反例。

95 8004 + 217 5194 + 414 5604 = 422 4814

这表明三个四次幂, 而不是欧拉说的四个四次幂, 也能生成一个四次

幂。[8]

寻找这些反例需要大量努力,甚至动用了计算机的力量,这是非常

惊人的。这显然给出了基本原则#3的一个推论：有时候反证比证明更

难。

基本原则#4：可以证明否定

在理发店或便餐店, 我们经常听到这样一句老话：你不能够证明

否定。它可能是由下面这样的对话引发而来的：

A：“超市小报说一个小妖精中了奖。”
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B：“没有小妖精这样的事。”

A：“你说什么呢？”

B：“我说小妖精不存在。”

A：“你肯定吗？你能够证明它们不存在吗？”

B：“当然⋯⋯, 不。但是你也不能证明它存在。”

这个对话很长。但是, 一句话, 它声称的是, 我们绝对不能证明小妖精

不存在。

数学家知道得更清楚。一些最伟大最重要的数学推理所论证的就

是某些数、某些形状、某些几何结构不存在且不可能存在。使用最猛

烈的武器, 即理性的、严密的逻辑确立了这样一些不存在的事物。

认为否定不可证明的这种普遍观念本质上是错误的。为了证明小

妖精不存在,似乎需要我们翻遍爱尔兰岛上的每一块石头,翻遍南极洲

的每一座冰山。当然这是不可能实现的野心。

为了在逻辑上确立不存在的事物, 数学家采用了一种非常不同然

而又非常完美的策略：假设这个对象的确存在, 然后再追踪由此产生

的结果。如果我们能够证明存在的假设将导致一个矛盾的话, 那么逻

辑法则允许我们得出结论：我们在第一步中所做的存在的假设是错误

的。因此, 我们就能够得出这个事物不存在的毫无争议的结论,同时也

说明这样的事实, 即我们采用了一个非直接的途径得到的这个结果是

正确的。

在第 Q 章中, 我们将讨论最著名的不存在证明：为什么不存在等

于
√

2 的分数。然而, 对于我们眼前的目标, 下面这个例子就足够了。

定理 不存在边长分别为 2, 3, 4 和 10 的四边形。

处理这个问题的一个实用的方法是截出这些长度的木棍, 然后尝

试着把它们摆放成一个有四条边的图形。这只是一个说明, 然而在逻

辑的意义下, 这相当于要在某块岩石下找到一个小妖精。即使我们花

费了好多年都没有成功地用这四根木棍摆出一个四边形, 也不能排除

也许某个人在某天成功地把它们摆成四边形的可能性。

合理的方法是我们要间接地证明一个否定。开始我们假设存在一
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个四边形, 它的边分别是 2, 3, 4 和 10, 然后我们再设法生成一个矛盾,

这是一个战略上的飞跃。

我们假设的四边形如图 J-4 所示。画出虚线所示的对角线, 它把

这个四边形分成两个三角形, 并设 x 是这个对角线的长度。因为在第

G 章已经说明过, 欧几里得已经证明了三角形的任意一条边小于其他

两条边的和。因此在 4ABC 中, 我们知道 10 < 4 + x。同样在 4ADC

中, 有 x < 2 + 3。把这两个不等式结合起来我们得到

10 < 4 + x < 4 + (2 + 3) = 9

根据上面的不等式我们得到 10 ＜ 9。这是不可能的。我们最初所做的

这个特殊的四边形存在的假设导出这样的矛盾, 所以我们说我们的假

设是无效的。

这个四边形的四条边的出现顺序 (按顺时针) 是 10, 2, 3, 4。还有

其他方法放置这四条边, 如图 J-5 所示, 同样的推理也导出一个矛盾。

此时是 10 < 2 + x < 2 + (3 + 4) = 9。这是不可能的。

图 J-4 图 J-5

没有必要再继续寻找了,重新布局再多的木棍也是没有意义的。这

样的四边形是不可能存在的。我们最终证明了一个否定。

基于矛盾的证明是一个非常好的逻辑策略。通过假设我们想要证

明的反面, 我们似乎是在毁灭我们的目标。但是, 最后我们避开了灾

难。哈代 (1877―1947) 把基于矛盾的证明描述为“数学家最好的武器

之一。它远比其他任何先手棋策略好得多：象棋手也许要牺牲一个小

卒或者其他一枚棋子, 但是数学家牺牲的却是整盘游戏。”[9]
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问题：还需要人类吗

大约在 20 世纪 70 年代到 20 世纪 80 年代期间, 有一种令人不安

的映像闯入数学家的意识之中。这就是计算机映像, 它以它那光一样

的速度和实质上的可靠性接手了证明定理的工作。

我们已经提到了几个例子,在这些例子中,计算机提供了否证某个

陈述的反例。95 8004+217 5194+414 5604=422 4814 的发现给予欧拉

的猜测致命的一击,与机械不同,很难想象人类要花费多长时间去寻找

这样一个反例。这是完全适合计算机的问题。

令整个数学界感到困惑的是最近出现的一些利用计算机来证明定

理的情况。这些情况往往是把一个定理分解成很多子情况, 肯定了每

一种子情况, 那么就可以断定整个问题解决了。遗憾的是, 这种分析通

常需要考虑上百种情况,需要成千上万次计算,人类没有可能复现所有

步骤; 总之, 这样的证明只能通过别的机器来检查。

1976 年计算机证明问题以四色猜测的解决戏剧般地登上了数学

舞台。所谓的四色猜测,是任何画在平面的地图都可以用四种 (或少于

四种) 颜色着色, 使得拥有共同边界的任意两个区域都被涂上不同的

颜色。(例如在图 J-6 中, 我们不想给区域 A 和 B 都涂上红色, 因为那

样它们的公共边界线会被涂掉了。我们允许给相交于一点的两个区域,

如区域 A 和 C 涂上相同的颜色; 当然一个点不是边界线。)

四色猜测产生于 1852 年, 在接下来的一个世纪引起了广泛的关

注。有几个问题很快就被解决了。已经证明了任何平面地图肯定可以

用五种颜色着色。还有就是用三种颜色着色地图是不充分的。图 J-7

就给出这样的一个地图。在这个图上,我们必须使得区域 A, B和 C有

不同的颜色, 因为它们每对都有共同的边界, 但是接下来, 除非使用第

四种颜色, 否则不可能给区域 D 着色。

因此, 五种颜色 (可能) 太多而三种颜色又不够。显然它就需要四

种颜色。四种颜色足以给任何平面地图着色吗？

我们之前的讨论表明, 要想解决这个问题只有两种选择：或者提

出一个特殊的反例,即给出一种不能用四种颜色着色的特殊地图,或者
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设计一个一般的证明, 证明任何地图都能够这样着色。对于数学家来

说, 这个反例很难找到。他们制作的每一张地图无论多么错综复杂, 都

能仅用红色、黄色、蓝色和绿色着色。(有蜡笔的读者也许想立即勾画

出一个地图, 然后尝试一下。)

图 J-6 图 J-7

但是, 正如我们反复提醒的那样, 与仅仅找到几个反例相比, 证明

需要做得更多。以前的一般推理是发疯地寻找, 但事实证明每一种情

况都与寻找反例一样困难。局势处于停顿的状态。

后来, 伊利诺伊大学的阿佩尔 (Kenneth Appel) 与哈肯 (Wolfgang

Haken) 宣布四色猜测为真, 震撼了整个数学界。令人们感到震撼的不

是这个结论而是他们的证明技术：计算机完成了证明中最艰苦的部分。

阿佩尔和哈肯处理这个问题的方法是, 通过把所有平面地图分成

某些类型, 然后分别分析每一种类型。遗憾的是, 一共有上百种类型需

要检查, 每一种类型又给高速计算机带来大量的测验。最后, 计算机宣

告这个猜测是真的, 即所有可能的类型都可以用四种颜色着色。这个

定理得到了证明。

这是真的吗？说句公道话,当时一种不安蔓延整个数学界。这算得

上是一个正确的论证吗？令人困惑的是, 需要一个真正的有血有肉的

人每周工作 60个小时, 花费大约 100 000年的时间去检查计算机的计

算。甚至是最健康、最乐观的人也不可能活那么长时间,总之谁能够花

那么长时间呢？

如果程序出现了错误怎么办？如果功率突增使得计算机跳过关键
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的步骤怎么办？如果计算机的硬件设计暴露出极少见的微小缺陷怎么

办？总之,我们能够相信机器大脑给我们真理吗？正如数学家罗恩�格

雷厄姆 (Ron Graham)在考虑这些复杂问题时提出的那样,“实质的问

题是这样的：如果没有人能够检查一个证明, 它还是一个真正的证明

吗？”[10]

直到今天这个问题也没有明确的答案, 尽管随着计算机证明变得

更加普遍,也许数学家们对它们的出现会感到稍舒服些。但是, 公正地

说, 如果四色定理是花了两页纸那样短小、睿智而优雅的证明, 而不是

依靠计算机的蛮力方法得到的证明, 那么大多数数学家们也许会轻松

地喘口气。传统主义者渴望古老的数学不要被接上电源。

“还需要人类吗？”此时这个问题的答案仍然是“是的”。毕竟得

有人打开空调吧。但是我们得承认这个观点也许是有偏见的, 因为它

的支持者本身是人。

我们关于数学论证的讨论到此就结束了。显然, 还有很多话要说,

也应该引出其他的议题, 应该提出其他的基本原则。但是, 我们最终

得出的最重要的结论是：无论是优雅还是麻烦,是直接还是间接, 是依

赖于计算机还是人力, 数学证明的标准不同于人类活动的任何其他领

域。
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1705年 4月 16日,在一次庄严的剑桥大学授爵仪式典礼上,英国

安妮女王封艾萨克�牛顿为爵士。用这一举动, 这位女王把不列颠的

最高荣誉授予给了她的一位最重要的国民。

牛顿与戈特弗里德�威廉�莱布尼茨分享创建微积分的荣耀, 在

数学界很难想象比此更大的荣誉了。本章我们描述牛顿的生活, 讨论

他与莱布尼茨之间的激烈争吵, 研究他的一个数学遗产：以他的名字

命名的 “方法”。(我们唯一遗憾的是, 出于本书的字母表顺序, 我们不

能称呼他是艾萨克爵士 (Isaac Knewton)。)

关于牛顿爵士的突出的事实就是他是跨越两门学科的神一样的人

物。让任何一位数学家说出三四个历史上最有影响的数学家, 他们无

一例外都要提到牛顿。让任何一位物理学家说出三四位伟大的物理学

家, 这其中肯定还是包括牛顿。

的确,牛顿工作在学科之间还没有竖起不可逾越的高墙的时代。在

他那个时代,数学和物理之间没有明显的界限,拥有共同的方法、问题

和从业者。这是一个把诸如光学、天文学、力学作为数学的一个分支

的时代。由于今天的发展进步, 数学家和物理学家常常发现他们各自

太专业而已无法彼此交流, 因此很难想象三个世纪之前他们之间的界
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限是如此模糊以至于到了不存在的程度。因此, 你也许小看了牛顿的

这种跨越学科的卓越。

然而, 这也许漏掉了关键的一点。被两个学科的人如此高看的人

的确非常少有。类似的人物还有剧作家和诗人莎士比亚, 或者画家和

雕刻家米开朗基罗, 但是他们的双重卓越还是不能与牛顿相媲美。他

的身份的确是非同寻常。

对于艾萨克来说, 生命之初是那样的不稳定。1642 年牛顿出生于

英格兰的乌尔索普, 他是个早产儿, 因此他活下来的机会很小。另外,

他的父亲在他出生前的几个月去世了。但是,更大的冲击即将来临。就

在他 3岁那年,牛顿的寡妇母亲再婚,并搬离到她新丈夫的家。深思熟

虑之后, 她还是决定把牛顿留下。几年之后她又回到牛顿身边, 但是很

多心理历史学家都相信这期间给他带来的伤害已经无法挽回。关于这

个话题, 一本非常畅销的书说：“牛顿近期的所有传记作家都认为, 他

在三岁到十岁之间与他母亲的这种分离是形成成年艾萨克多疑、神经

质和扭曲个性的关键因素。”[1]

不管牛顿是不是神经质, 但是这个孩子却显示出无可争议的天才

迹象。这种能力显然表明他应该进入大学, 与此同时他显然对于成为

乡绅不感兴趣。于是 1661 年他进入了剑桥大学的三一学院, 开始了他

非同寻常的学术生涯。

使这样的学术旅程成为可能的是这样的事实：剑桥的教授对教学

不感兴趣, 就像牛顿自己对农业技术不感兴趣一样。因此他就可以自

由地跟着自己的兴趣走, 不久这些兴趣远远偏离了凸现当时正式课程

特点的希腊语和拉丁语的繁重学习, 进而转向了那个时代令人兴奋的

数学和科学的进步上来。这位孤独的学者,牛顿,贪婪地学习这些科目,

直到他能够开始原创性的研究, 虽说当时他还是一名大学生。在 1665

年到 1667 年的这段空暇时期, 他的工作仍在继续, 当时由于暴发了瘟

疫而使剑桥两次闭校。由于这样的瘟疫, 牛顿不得不返回乌尔索普的

家, 尽管他很难把他的返乡看成是悠闲的度假。

正是在乌尔索普牛顿才遇到了那只苹果。据传说, 当时他正在一
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棵树下休息, 他差点儿被一只掉下来的果子打到。他沉思着既然地球

用力拉拽这只苹果, 那么它不也能拉更远的天体吗? 牛顿回忆到,“我

开始考虑把万有引力扩展到月球轨道 ye 上”, 这就是你能查寻到的万

有引力的简短导言。[2]

现代学者认为那只掉下来的苹果并不是如同神话那样几乎擦肩而

过, 但是这个故事本身却很吸引人。它促使拜伦勋爵这样写牛顿：

这是自亚当之后能格斗的唯一凡人,

用降落物, 或用苹果。[3]

英国邮票上牛顿的苹果
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正如上面的这张插图所展示的那样,根据公众的想象,这只苹果已

经作为牛顿超凡威力的符号印刷到邮票上了。

这场瘟疫平息下来之后, 牛顿返回三一学院。1669 年, 尽管他还

相当年轻，而且也不知名，但是他却担任了剑桥大学享有盛誉的卢卡

斯讲座数学教授。他众所周知的伟大成就发生在 1687 年, 当时在埃德

蒙�哈雷 (Edmund Halley) 的鼓励之下, 牛顿最终同意发表他的巨著

《自然哲学的数学原理》。这本著作用精确、详细的数学语言陈述了牛

顿力学。在这本书中, 他引入了运动定律和万有引力的原理, 并以数学

方式推断了从潮汐流到行星轨道的每一件事情。《自然哲学的数学原

理》被很多人认为是至今为止最伟大的科学著作。

由于获得这样的成功, 牛顿成为了科学界令人注目的人物。当然,

公众对此不甚了解, 但是非常像 20 世纪的爱因斯坦, 牛顿成为新科学

的活符号。伏尔泰称牛顿是“至今最伟大的人”并评论说像牛顿那样

的天才一千年只能出现一个。[4]

自从牛顿闪耀登场之后, 他的生活发生了根本的变化。1689 年他

作为剑桥大学代表参加英国“国会会议”。1696 年他担任皇家造币厂

的监督, 并搬到伦敦度过了他的余生。1703 年他当选为皇家学会的会

长, 并于次年发表了他另外一份伟大的手稿《光学》。到了 1727 年他

去世的时候, 艾萨克�牛顿先生已经是一位令人尊敬的科学家、富有

的政府官员, 是有资格葬于威斯敏斯特教堂的名人堂中的英国民族英

雄。

对于数学家来说,他最宏大的发现源于大约 17世纪 60年代中期,

即他称为“流数”的这门学科,但是后来我们采用了莱布尼茨为它起的

名字“微积分”。出于现代人似乎永远无法完全理解的原因, 牛顿没有

发表他的发现。在拥有可能是历史中最伟大的数学发明的情况下, 他

却选择了沉默。

他的古怪和神秘的个性对他并没有帮助。在他的一生中, 牛顿可

能多次发现其他人正在走着他几年前已经走过的智力路线。如果他总

是姗姗来迟地对外公布他是第一发现者, 这自然就会引起学术界的骚
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乱。对他来说, 在他发现的时候交流他的工作会更简单, 这样既能保证

他的影响还能保证他的名声。

艾萨克�牛顿

(芝加哥大学, 叶凯士天文台惠允)

至于说到他为什么讨厌发表,其解释总是归结为他怪癖的个性：他

不信任别人, 他讨厌批评, 他“希望避开卷入麻烦和毫无意义的争论之

中。”[5] 在下面的评论中他的观点表露得很清楚,“我希望回避所有有

关哲学方面的争论, 而没有哪种争吵能够比发表中的争吵更麻烦。”[6]

因此, 我们有这样一位科学家, 他很在意他的名声, 却不情愿公开

他的发现。甚至对于为私下交流而准备的手稿, 牛顿也力求控制其发

放。“恳求让我的数学论文一篇也不要发表,”他在给一位有一份他的
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没有发表的手稿的同事的信中写道,“它必须出自我的特别许可。”[7]

其实, 即使不是牛顿这样级别的天才也能够预见这样的行为将会

带来不愉快的后果。随着时间的流逝, 他开始卷入多次优先权的争吵

之中, 与其他科学家展开了谁在什么时候做了什么的令人厌恶的争吵

之中。他与他的同胞罗伯特�胡克及约翰�弗拉姆斯蒂德发生了冲突,

但是到此为止他所卷入的最激烈的争论是与莱布尼茨关于创建微积分

的论战。

纵观这段历史, 这一事件的基本事实是这样的。

(1)在 17世纪 60年代中期,牛顿已经发现了他的流数方法。他在

1669 年写的一篇名为《论分析》的论文中描述了它, 到了 1671 年这一

论文被扩充为《论流数方法》。这些论文都是在英国数学家中特定的圈

子里交流的, 而且没有发表,因此并没有很多人知道。看这些东西的人

立即意识到牛顿的强大, 有人把他描述成为“非常年轻⋯⋯却是一位

非同寻常的天才和行家。”[8]

(2) 在 17 世纪 70 年代中期, 也就是足足十年后, 莱布尼茨做出了

本质上相同的发现。由于一次外交任务, 1676年他来到伦敦,看到了一

份牛顿的《论分析》的手稿。

(3) 大约就在这个时候, 莱布尼茨收到了艾萨克的两封信, 就是现

在所说的《前信》和《后信》, 在这两封信中牛顿阐述了他自己关于无

穷级数的一些思想以及关于流数的一些思想, 但是却相当隐晦。

(4) 1684 年, 莱布尼茨发表了关于微分学的第一篇论文, 就是我们

在第 D 章一开始介绍的那篇。在这篇论文中, 莱布尼茨只字没有提到

早在八年前他看过牛顿的手稿或者与他之间的书信往来。当然也只字

没有提到牛顿这个人。

但是, 这并不表明莱布尼茨剽窃了牛顿的东西 (尽管这正是很多

英国数学家所表明的)。这份手稿的形迹确定莱布尼茨尽管与牛顿接

触过, 但是他独立发现了微积分原理, 而且堂堂正正地分享这一发现

的荣誉。因为牛顿习惯秘而不宣, 所以莱布尼茨 1684 年的论文毫无疑

问就成了学术界了解这一优美学科的源头。
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显然, 两个当事人都有错。如果牛顿在他的发现与莱布尼茨的论

文发表的二十年间的任何时候发表他的研究成果, 那么优先权的问题

也就不存在了。因为他的沉默, 牛顿招来了麻烦。对于莱布尼茨来说,

如果他承认接触过牛顿的文件, 那么他就更令人信服地分享他应该得

到的这份信任。凭借他的沉默, 莱布尼茨让整个世界都相信他是唯一

的发现者。随着这场争吵不断升温, 他不断承受着自己的不诚实带来

的困扰。

莱布尼茨 1684 年的论文发表之后, 牛顿开始抱怨优先权的事, 而

且这些牢骚渐渐演变成为一触即发的愤怒。在牛顿看来, 只有第一发

现者才有资格得到认可 (即使那些发现者花费了很大努力来隐蔽他的

工作以避开公众的视线)。[9]1699 年, 牛顿 1676 年给莱布尼茨的两封

信发表, 英国人都相信他们已经发现了“确凿的证据”, 或者说一句当

时的行话, 即发现了“确定的武器”来证明后者的学术剽窃行为。

在那之后, 局势逐渐恶化, 一片混乱。谴责之声如潮水般涌来, 各

自忠实的粉丝分别加入这两个主要人物的阵营, 他们彼此之间的唇枪

舌战弥漫整个英吉利海峡。在我们看来, 这似乎相当不合适, 但是我们

的看法是第三者的看法,没有受到当时那种激情的感染,也不会被英国

人和他们的欧洲大陆对手的国籍所左右。

为了感受一下这场舌战的战况,我们看一下双方投出的手榴弹。一

位英国的牛顿追随者把这场战役写成 1708声明,并不计后果地把它发

表在皇家学会的《哲学学报》上：

所有这些 (结论)都来自于新近非常有名的流数的算术,毫无疑问

它是牛顿先生第一个发现的, 任何读过他的信件的人⋯⋯都很容易这

样确定; 这一计算后来以不同的名字和不同的记法被莱布尼茨先生发

表在《教师学报》上。[10]

然而,律师也许会辩论说这里没有明确指控剽窃,但对牛顿思想的引用

以“不同的记法”“后来被莱布尼茨先生发表了⋯⋯”意思相当清楚。

莱布尼茨也这样想。于是他大声向皇家学会提出抗议, 抗议认可这样

的攻击性的声明。
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这是令他终生遗憾的上诉。作为回应, 皇家学会组织了一个委员

会来调查这场优先权的争论。他们的报告发表于 1713 年, 标题是《委

员会报告》, 这份报告从各个方面都支持了牛顿。它表明莱布尼茨在

1677 年之前根本没有提到微积分, 之后他收到了牛顿的信件而且还看

了牛顿的手稿。《委员会报告》的结论显然是：莱布尼茨偷取了这位大

师的想法。然而, 当人们意识到牛顿是皇家学会的会长, 而这份报告大

部分都是他自己写的时, 这种刺眼的结论在一定程度上失去了它的影

响。

谴责和反诉仍在持续。不久一份支持莱布尼茨的匿名海报在这个

大陆上出现。在这张海报上, 你可以发现这样一段话：

当牛顿自己占有了这份本应属于第一个发现了微分学的莱布尼茨

的荣誉时⋯⋯他深受对事件早期经过一无所知的吹捧者的影响, 也深

受对追求名利的影响; 已经得到了本不应该得到的那部分⋯⋯他渴望

得到全部, 这就是他心理既不公平也不诚实的表现。[11]

由此我们能读出的意思就是, 正是他牛顿不诚实地抢了莱布尼茨

的风头, 而不是反之。当然这样可笑的谴责就是牛顿拒绝发表成果所

付出的代价。后来的调查发现, 这份匿名攻击的作者是戈特弗里德�

威廉�莱布尼茨本人, 对此我们应该不会感到惊讶。

反思过去, 所有时代中最伟大的两个数学家之间的这种相互谴责

在欧洲知识史中写下了悲伤的一章。如此天才的人传承下来的这种卑

鄙无耻相互人身攻击的行径不会给我们这些更谦逊的知识分子带来好

影响。整个事件给牛顿、莱布尼茨、数学乃至整个学术界带来了极大

的困扰。

这样极不体面的争吵使牛顿的形象受损。至少在某种程度上是这

样的, 在接下来的几十年他的注意力转到了炼金术和神学。

当然, 炼金术是中世纪人们从事的研究, 科学家和魔术师想要把

普通的化学制品变成金子。牛顿阅读了大量关于这一问题的资料, 在

他自己制造的炉子旁边花费了大量时间, 坚持不懈地把化学制品加热,

然后观察黄金闪光。然而, 与他的流数相比,他对他的炼金术似乎更神
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秘, 而且炼金术的笔记最终达到将近一百万字。

他的神学作品同样是数量众多。牛顿是仔细研读圣经的大师, 识

别预言, 连结似乎不相关的段落。他的笔记包含耶路撒冷的神庙的平

面设计图, 这是他依据圣经的相关段落整合而成的, 他还发表了诸如

《但以理书》和《圣�约翰启示录》两卷本等著作。这显然是他主要关

注的一个问题。

遗憾的是, 尽管无论是数学还是物理学都因牛顿的著作而永远地

丰富起来,但是他在神学方面的遗产却没有保存下来,而且现在把炼金

术土都看成是江糊骗子一类人。人们极其想知道, 如果牛顿对这些事

情投入的时间少一些, 那么牛顿还可能取得哪些科学成就?

现在我们说一件事,一件只有他这样的天才才能做的事情,即所谓

的求方程的近似解的“牛顿方法”。下面我们描述的这种形式精确说来

不是牛顿 17 世纪 60 年代发现的那个方法。约瑟夫�拉夫逊在 1690

年和托马斯�辛普森在 1740年分别对他的技术加以修改,因此他的技

术传到我们, 在外表看起来已经有某种程度上的不同了。但是即使是

修改版, 其精髓部分还是他的。

手边这个问题就是整个数学中最基础的问题之一：求解一个方程。

很多数学旅程最终都要经过这一点, 然而代数过程因受限于代数自身

的能力而无法提供精确的解。例如,二次公式表明方程 7x2−24x−19 =

0 的解是
12 +

√
277

7
和

12−√277
7

但是没有代数技术可以给出下面方程的精确解

x7 − 3x5 + 2x2 − 11 = 0
如果我们真需要求解一个这样的方程该怎么办? 当一位数学家遇到这

样一个不可解的问题时他怎样做呢?

其策略是瞄准一个稍低些的目标。如果这个方程的精确解是不可

能得到的, 那么我们尝试着求一个近似解。毕竟, 精确到十位小数的解

对任何实际需要都应该已经足够了。另外, 如果这个近似技术也相当

简单, 如果它自身拥有自己的理论基础, 如果它可以被反复使用从而
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得到更精确的估测值,那么这个过程几乎可以与它的精确方法相媲美。

还好, 这些性质恰好是牛顿方法的特色。

在继续之前, 我们观察到上面这两个方程的右边是零。这不是偶

然的,因为我们可以保证在运用这个方法之前把方程变成这种形式。当

然, 只要把所有项都移到等号左边就可以做到这一点。即不是处理方

程 x3 + 3x = 7x5 − x2 + 2, 而是让它的项都穿过等号向左边移动从而

得到等式

−7x5 + x3 + x2 + 3x− 2 = 0

因此得到所需的形式 f(x) = 0。在以下的过程中我们都是这样做的。

此时, 我们稍微需要一点几何知识。考虑 y = f(x) 的图像, 如图

K-1 所示。求解方程 f(x) = 0 相当于求函数图像与 x 轴相交时的交

点的 x 值。这样的点称为函数的 x 截矩, 在图 K-1 中它被标识为 c。

如果我们能够 (至少近似地)确定 c,我们就将 (至少近似地)解得方程

f(x) = 0。

图 K-1

牛顿方法要求我们首先猜测一

个解。在图 K-1 中, 我们把第一个

猜测值标识为 x1。本质上, 我们是

说 x1 ≈ c,c 是实际解。从图示可以

看出这个估测值不是非常好, 因为

x1 比 c 小很多, 但是不要担心。牛

顿方法的天才部分就是它提供了一

个方案, 这个方案伴随我们的每一

次使用都能改进这一估测值。

从水平轴 x1 点开始, 垂直向

上看, 我们在曲线 y = f(x) 上找

到对应的点 A。这个点有对应的坐

标 (x1, f(x1))。如图 K-1提示的那样,我们画出曲线在点 A处的切线。

就是在这里微分学进入这张图中, 因为根据第 D 章, 这条切线的斜率

是这个函数在点 x = x1 处的导数。用符号表示, 这条切线的斜率是
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f ′(x1)。

现在, 想象从左到右沿着曲线下降。最理想的是我们可以继续沿

着下降的趋势走下去, 直到遇到这个方程的精确解 c。但是, 因为我们

不知道这个精确解, 所以我们选择在点 A 处离开曲线, 并沿着切线向

下移动。这条切线与 x 轴的交点 x2 虽然不是精确的点 c, 但是至少比

我们的第一个估测值 x1 离点 c 更近些。

上文讲述了牛顿方法的几何本质。但是, 我们如何用代数方法确

定新的估测值 x2 呢? 答案是从两个不同观点考虑这条切线并使结果

相等。正如提示的那样, 这条切线的斜率是导数 f ′(x1)。另外, 任意一

条直线的斜率可以由下面的表达式给出：

斜率 =
垂直上升

水平移动
=

y2 − y1

x2 − x1

正如图像所表明的那样, 这条切线经过点 (x1f(x1)) 和 (x2, 0)。因此它

的斜率是
0− f(x1)
x2 − x1

= − f(x1)
x2 − x1

令斜率的这两个表达式相等, 我们求得 x2：

f ′(x1) =切线的斜率 = − f(x1)
x2 − x1

所以有

x2 − x1 = − f(x1)
f ′(x1)

这表明

x2 = x1 − f(x1)
f ′(x1)

因此, 我们得到了求 x2 的表达式, 这是 c 的更好的估侧值, 这要

依赖于：(1)我们前面猜测的 x1 的值;(2)函数 f 在点 x1 处的值;(3)导

数 f ′ 在点 x1 处的值。当然,我们仍不知道 c的精确值,但是利用这个

公式我们就可以改进这个近似值。

如果 x2 不够精确怎么办呢? 我们再一次简单地运用整个推理过

程, 这一次从 x2 开始。这一次生成一个更好的估测值
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x
c

y

x1 x3x2

y = f (x)

(x1, f (x1))

图 K-2

x3 = x2 − f(x2)
f ′(x2)

如图 K-2 所示。从图中可以看到,

我们的近似解 x3 与真解 c 之间的

差距非常小。当然, 我们还可以再

一次运用这个过程。一般地, 如果

xn 是第 n步时的近似值,那么这个

近似值是

xn − f(xn)
f ′(xn)

这个公式具体说明了我们所说的牛

顿方法。

下面给出一两个例子。假设希望近似估计
√

2。正如我们将在第 Q

章看到的那样, 十位小数或者千万位小数都不能给出它的精确值。然

而我们经常需要估计
√

2 精确到小数点后相当多位数的值。

今天, 你可以简单地使用计算器让机器做计算。然而在某种意义

下, 这回避了一个问题, 即计算器是如何找到
√

2 的呢? 换个方式, 如

果是我们的话如何能够得到这个答案呢?

最好的方法是运用牛顿方法。我们首先注意到
√

2 是方程 x2 = 2

或者等价地 x2− 2 = 0的解; 此时我们已经采用了形式 f(x) = 0,其中

f(x) = x2 − 2。在第 D 章, 我们已经证明 x2 的导数等于 2x, 任意常数

的导数 (即斜率) 等于零。因此 f ′(x) = 2x− 0 = 2x。

于是, 牛顿方法说, 如果 x1 是我们对 x2 − 2 = 0 的解的第一个估

测值, 那么我们的第二个估测值是

x2 = x1 − f(x1)
f ′(x1)

= x1 − x2
1 − 2
2x1

如果我们求得公分母并化简, 上面的表达式变成

x2 =
2x2

1 − (x2
1 − 2)

2x1
=

x2
1 + 2
2x1
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类似的推理运用于近似值 xn 就生成下一个估测值

x2
n + 2
2xn

现在只剩下
√

2的第一次估测。比较合理的选择是 x1 = 1。然后,我们

重复运用牛顿方法：

x2 =
x2

1 + 2
2x1

=
1 + 2

2
=

3
2

x3 =
x2

2 + 2
2x2

=
(9/4) + 2

3
=

17/4
3

=
17
12

x4 =
x2

3 + 2
2x3

=
(289/144) + 2

17/6
=

577/144
17/6

=
577
144

× 6
17

=
577
408

x5 =
x2

4 + 2
2x4

=
(332 929/166 464) + 2

577/204
=

665 857
470 832

把上面的这些分数都化成小数, 生成一系列近似值

x1 = 1.000 000 000 · · ·
x2 = 1.500 000 000 · · ·
x3 = 1.416 666 666 · · ·
x4 = 1.414 215 686 · · ·
x5 = 1.14 213 562 · · ·

事实上,精确到九位小数时
√

2 = 1.414 213 562 · · · ,所以牛顿方法重复
四次产生了九位的精确度。另外, 这样一步的结果是下一步的输入的

重复方案被程序员称为“循环”。它使得牛顿方法在计算机上快速而高

效。

另外一个例子是牛顿自己的。在 1669 年首次描述这一方法的论

文 (当然没有出版) 中, 他给出了一个三次方程 x3 − 2x− 5 = 0。为了

求近似解, 我们设 f(x) = x5 − 2x− 5, 因此根据第 D 章的微分法则有

f ′(x) = 3x2− 2。于是,牛顿方法告诉我们,如果 xn 是这个解的当前估

测值, 那么下一个估测值是

xn − f(xn)
f ′(xn)

= xn − x3
n − 2xn − 5
3x2

n − 2
=

2x3
n + 5

3x2
n − 2
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这里, 第一个合理猜测值是 x1 = 2, f(2) = 23 − 2(2)− 5 = −1, 这

个值相当靠近 0。把这一过程运用三次得到

x1 = 2

x2 =
2(23) + 5
3(22)− 2

=
21
10

= 2.1

x3 =
2(2.1)3 + 5
3(2.1)2 − 2

=
23.522
11.23

= 2.094 568 121

x4 =
2(2.094 568 121)3 + 5
3(2.094 568 121)2 − 2

=
23.378 643 93
11.161 646 84

= 2.094 551 482

所以我们得到近似解 x = 2.094 551 482。把它代入到原来的三次方

程, 我们得到 x3 − 2x − 5 = (2.094 551 482)3 − 2(2.094 551 482) − 5 =

0.000 000 001, 这个值非常接近 0。重复三次使用牛顿方法就非常简单

而有效地击中了答案。他自己似乎也对这个技术相当满意并写道：“我

不知道这个求方程解的方法是否能够广为人知, 但是可以肯定的是与

其他人的方法相比较, 它既简单又实用⋯⋯而且当需要时很容易想到

它。”[12]

图 K-3

出于公正, 我们还应该提醒大

家一句：尽管有了前面的几个例子,

但是很多时候, 在我们使用牛顿方

法时需要格外小心。例如,考虑三次

方程 x3 = x2+x+1。如前面的操作,

我们把所有项都移到左边并把它写

成 f(x) = x3 − x2 − x − 1 = 0。第

D 章的导数法则告诉我们 f ′(x) =

3x2 − 2x− 1。

假设现在我们选 x1 = 1 作为

我们的第一个估测值, 并把它代入

到上面那个关键公式得到

x2 = x1 − f(x1)
f ′(x1)

= 1− f(1)
f ′(1)

= 1− −2
0
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但是除数是 0 的除法在任何数学过程中都是不允许的。表达式 −2/0

没有意义。牛顿方法失败了。

如果我们返回到原来的理论, 很容易发现错误所在。在图 K-3 中,

我们画出了 y = f(x) = x3 − x2 − x− 1 的图像, 并标识出第一个估测

值 x1 = 1。因为 f(1) = −2, 我们向下标出点 (1,−2), 画出切线, 并设

下一个估测值 x2 是这条切线与 x 轴的交点。但是此时这条切线是水

平的, 因此它与 x 轴平行。因为这条切线与 x 轴从不相交, 因此牛顿

方法需要的交点 x2 不存在。

还好,这样的瑕疵很容易修正。牛顿方法完美的特性之一就是它自

己包含修正机制。我们只需取不同的初始估测值就可以了, 例如 x1 =

2, 并让这个方法计算出一连串近似值：
x2 = 1.857 142 857

x3 = 1.839 544 512

x4 = 1.839 286 812

x5 = 1.839 286 755
已经足够了, x = 1.839 286 755以很高的精确度满足原来的三次方程。

今天有一个非常重要且非常有用的数学分支被称为数值分析, 它

就是瞄准了近似过程的优点。这门学科已变得非常巧妙且非常深入,但

是它的标志就是牛顿方法。这是数学的伟大定理之一, 也是微积分最

广泛应用的案例之一。

我们对牛顿和他的伟大数学生涯再说最后一句话, 来作为本章的

结束。如提到的那样, 他不是没有人格缺陷, 有些学者甚至把他的神

秘、神经质的特性认为是一种疯狂的迹象。但是,用莎士比亚的一句话

解释说：即便这是疯狂, 那也是有 (牛顿的) 章法的。
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正如前一章所提到的那样, 艾萨克�牛顿被列入整个时代最伟大

的数学家行列。他的成就无数, 而超越所有人的成就是他的微积分的

发明。

他与他的同时代人戈特弗里德�威廉�莱布尼茨一起分享这一荣

誉。事实上是莱布尼茨给出了这门学科的明确的记法甚至是名字。然

而, 因牛顿发明了微积分而把他置于这个名单之首的这些学者们却通

常忽视莱布尼茨,尽管他也发明了微积分。某种程度上, 莱布尼茨似乎

被遗忘了。这不仅不公平也很不幸, 因为在很多方面, 同牛顿一样莱布

尼茨的故事也非常引人注目。

1646年戈特弗里德�威廉�莱布尼茨出生于莱比锡。还是个孩子

的时候,他就显示出广泛的阅读兴趣,而且他似乎拥有以惊人的速度学

习任何东西的能力。莱布尼茨也许是一位最令人难忘的学者, 他十五

岁那年进入大学。三年后他得到了学士和硕士学位, 不久之后他得到

了阿尔特道夫大学的法学博士学位。大有会当凌绝顶, 一览众山小的

气势。

与此同时, 在剑桥, 牛顿正在夜以继日地研究他的非凡的流数。而

莱布尼茨尽管完成了很多学科的学习, 但是此时他对数学还是知道的
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很少。几十年后他回忆说“1672年当我到达巴黎时, 我自学了几何,我

的确对此学科知道的很少, 对这门学科我没有耐性去看那一长串的证

明。”[1] 甚至是欧几里得对他来说都是个很神秘的人物,当时他碰巧看

到了笛卡儿的《几何》,他发现它太难了。[2] 没有人能够想到仅在几年

内他的诸多发现会使他跻身于数学巨人之列。

法律占据了莱布尼茨接下来十年的大好时光。他被雇用去做梅因

斯选帝侯的顾问, 并以这一身份承担外交使命, 于 1672 年三月前往巴

黎。事实证明这一工作是他人生重要的经历。这位年轻的外交官醉心

于他在那里感觉到的艺术、文学和科学的活力。他爱上了巴黎以及这

一时期巴黎所展示出的一切, 爱上了这个“太阳王”的地区。

在法国首都居住的众多知识分子当中, 对莱布尼茨影响最大的是

荷兰科学家和数学家克里斯蒂安�惠更斯 (1629―1695)。在这一重要

时期,惠更斯充当着良师益友的角色,他想要评估一下这位年轻朋友的

数学敏感性,于是向莱布尼茨发出挑战,要求他解决下面的无穷级数的

和

1 +
1
3

+
1
6

+
1
10

+
1
15

+
1
21

+
1
28

+
1
36

+ · · ·
(第 n 个分数的分母是前 n 个整数之和。)

莱布尼茨仅凭着自身的聪明而不是过去已有的训练在实验几次后

把这个级数重写成

1 +
1
3

+
1
6

+
1
10

+
1
15

+
1
21

+
1
28

+ · · ·

= 2
[
1
2

+
1
6

+
1
12

+
1
20

+
1
30

+
1
42

+
1
56

+ · · ·
]

然后, 把方括号中的每一个分数表示成两个分数, 他把上式右边变成

2
[(

1− 1
2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+

(
1
4
− 1

5

)
+

(
1
5
− 1

6

)

+
(

1
6
− 1

7

)
+ · · ·

]
= 2[1] = 2

因为方括号中第一项之后的所有项都消掉了。用这样的方法, 他正确

地计算得到
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1 +
1
3

+
1
6

+
1
10

+
1
15

+
1
21

+
1
28

+
1
36

+ · · · = 2

这位数学新手已通过了惠更斯的测试。关于这个问题在莱布尼茨

的生涯中所起的作用,历史学家约瑟夫�霍夫曼发表了评论,他说：“那

个例子如果再稍微难一点 (因此莱布尼茨就解不出来), 毫无疑问将熄

灭他对数学的热情。”[3] 那么成功就不会光顾他。

莱布尼茨不仅仅是解决了一个问题。因被无穷级数所吸引, 他思

考了很多其他例子, 后来他说对这样一些和的研究显然是他发明微积

分的关键。[4] 这已成为莱布尼茨数学的标志, 他就是要寻求一个基本

原则,这个基本原则能够把诸多类似问题组成的一大类问题统一起来。

在很大程度上,他的天才就使他具备了这样的能力,能够发现连结似乎

不相关的特殊例子的一般法则。实现这样的分析需要敏锐的智慧, 而

莱布尼茨当然拥有这样的智慧。

他的工作的第二个特点是对好的记法的欣赏。他提倡一个收集了

很多符号和法则的“人类思维字母”, 如果能够照其行事, 它也许会确

保在数学乃至日常生活中做出正确的推理。尽管这一宏伟计划从来没

有变成现实, 但我们认为它是现代符号逻辑的前身。即使莱布尼茨没有

成功地符号化人类的思维, 但是他引入的微积分记法却一直延用至今。

在巴黎, 他的智力旅行不断加速。按照他的习惯, 他的阅读范围很

广,而且他的外交工作也一定会对此带来影响,但是他还是很快进入到

数学的前沿阵地。到了 1673 年春天, 他正式开始他自己的发明。莱布

尼茨回忆说：“此时我已经为自己独立前进做好了准备, 因为我读 (数

学) 几乎如同他人在读浪漫故事一样。”[5]

现在, 有些发现被认为是小的好奇心。例如,他解决了一个富有挑

战的问题, 找到了和为完全平方且其平方和为完全平方的平方的三个

数 (这类神秘问题在他那个时代很流行)。莱布尼茨发现的数是 64, 152

和 409,它们的和是 64+152+409 = 625 = 252,这是一个完全平方,而

它们的平方和是

642 + 1522 + 4092 = 194 481 = (441)2 = (212)2
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戈特弗里德�威廉�莱布尼茨

(拉法耶特学院图书馆惠允)
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这是一个平方的平方。他是如何发现这些数的并不重要, 我们要

强调的是：他不是通过猜测得到的。[6] 莱布尼茨还发现了下面这个古

怪的公式 √
1 +

√−3 +
√

1−√−3 =
√

6

这个公式不仅令世界上某些大数学家感到困惑 (某种意义上, 包括他

自己), 而且还帮助普及了虚数, 这是第 Z 章的主题。[7]

所有这一切只是莱布尼茨数学生涯伟大篇章的序曲。随着在他巴

黎的寓所工作的进展, 他把他的研究推向深入, 因此, 到了 1675 年的

秋天,他已经拥有这个“新方法”,就是我们现在所说的微积分的课题。

这段时光对他来说是愉快的, 而对数学来说是非常重要的。当现代观

光客在巴黎的街道上散步时, 他们总是会想到创立于这个伟大城市的

艺术、音乐和文学, 维克托�雨果或图卢兹–罗特列克这样的人物好像

重生了。但是, 很少有人会意识到在三个多世纪前同样的林荫道也见

证了微积分的诞生。如果巴黎造就了伟大的艺术, 同样它也造就了伟

大的数学。很少有人意识到这一点,也表明了莱布尼茨被严重遗忘了。

他的外交使命从 1672 年开始持续到 1676 年秋天, 这年秋天他回

到他的祖国德国。正是在德国他于 1684 年发表了微分学的第一篇论

文。两年后, 第二篇论文介绍了这门学科的另一个分支, 积分学, 这将

是本章剩余部分的内容。

正如我们已看到的那样, 微分

学研究的是曲线的斜率。另一方面,

积分学描述的是曲线下面的面积。

提到考虑面积, 积分所攻克的问题

要起源于几千年前。

我们的讨论从一个一般函数

开始, 它的图像位于水平轴之上。

积分学的目标是确定这个坐标

轴上的任意两点间曲线 y = f(t)

下阴影部分的面积,比如说在图 L-1

图 L-1

图灵社区会员 cindy282694 专享 尊重版权



158 数学那些事儿：思想、发现、人物和历史

中是从左边的 t = a 开始到右边的 t = x 之间。(在下文中, 我们使用

t 而不是 x 表示自变量, 这是出于记法的方便, 而且事实证明这很有

用。)

我们前面已经求得诸如圆 (第 C 章) 或者梯形 (第 H 章) 等一类

图形所围成的面积。但是那时对于每一个不同图形我们需要一个不同

的公式。相对而言, 积分采用更一般的视点, 寻找一个统一的方法求任

意函数界定的面积。这是一个更具野心的目标。

当你面对某种不知道的东西时, 一个合理起点就是回想这样的忠

告：尝试着把它与已知的东西联系起来。因此, 我们处理这个不规则

的阴影部分的面积的方法就是要通过处理更简单的已知图形的面积开

始, 此时我们从普通的矩形开始。

即如图 L-2 所示, 在点 t1 和 t2 把 a 到 x 的水平区间分成三个更

短的线段, 称为子区间。我们把这三个子区间的长度记为
∆t1 = t1 − a, ∆t2 = t2 − t1, ∆t3 = x− t2

接下来, 在每个子区间上构造矩形。当然, 不是任何矩形都可以,

因为它必须与曲线 y = f(t) 有关联才可以。所以选择 a 到 t1 这个区

间上的矩形的高是函数在 t1 处的值。用符号表示, 左边这个矩形的高

是 f(t1)。因此这个矩形的面积是 (高)×(底)=f(t1)∆t1。类似地, 中间

这个矩形的高是 f(t2),面积是 f(t2)∆t2,而右边的矩形的高是 f(x),面

积是 f(x)∆t3。

这样,我们可以近似求得原来曲线下的面积,即它等于这三个矩形

的面积之和。即

曲线下的面积 ≈矩形面积之和 = f(t1)∆t1 + f(t2)∆t2 + f(x)∆t3

显然这个值是图 L-1 中阴影面积的相当粗略的近似。如何改进它呢?

合适的技巧显然就是取更多更窄的矩形。在图 L-3中,我们把从 a

到 x的区间不是分成三个子区间,而是分成六个子区间, ∆t1,∆t2, · · · ,

∆t6, 然后分别作其上的六个瘦些的矩形。于是, 我们有
曲线下的面积 ≈矩形面积之和 = f(t1)∆t1 + f(t2)∆t2 + · · ·+ f(x)∆t6

这是一个改进结果, 因为矩形更窄, 所以这个结果更接近曲线下的面

积。
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图 L-2 图 L-3

为什么到 6 就停止呢? 采用更一般的观点, 把从 a 到 x 的区间分

成 n 个子区间, 它们是 ∆t1,∆t2, · · · ,∆tn, 在每个子区间上构建矩形,

得到下面的近似值：

曲线下的面积 ≈矩形面积之和 = f(t1)∆t1 + f(t2)∆t2 + · · ·+ f(x)∆tn

n 越大, 矩形就越窄, 它们对问题中的面积的估测就越准确。但是即使

有一千个窄矩形带也不可能给出曲线下的精确面积。为了使这个面积

更精确, 我们必须利用极限的思想。

回想一下第 D章中出现的极限,在那里它们对定义导数起到了关

键的作用。此时极限又是积分的关键思想。不要止于一千或者一百万

个矩形,我们让它们的数量没有限制地增加,甚至到了它们的宽度逼近

零。这样做以后, 我们将定义曲线下的面积。即
曲线下的面积 = lim[f(t1)∆t1 + f(t2)∆t2 + · · ·+ f(x)∆tn]

这里我们取当所有子区间的长度趋近于零时的极限。在取极限之后,我

们可以把 ≈替换成 =,而且可以去掉限定词“近似”面积;当取过极限

之后, 其最终的面积就是精确的了。

按照莱布尼茨的习惯, 他引入了一个新符号。他把曲线下的面积

表示成 ∫ , 这是“sum”中的拉长的“S”, 表示矩形面积和。有趣的是,

我们知道他选择这一记法的日期是：1675年 10月 29日。[8] 从此以后

y = f(t) 在 t = a 和 t = x 之下的面积表示成为∫x

a

f(t)dt
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这就是积分,它是由上面的矩形面积的和的极限定义的,而且求这个积

分的过程称为积分法。毫无疑问它是高等数学的基础概念之一。

下面举一个例子。假设我们希望求直线 y = f(t) = 2t 下从 t = 0

到 t = 1的面积,如图 L-4的阴影部分所示。此时这个区域就是简单的

三角形, 所以我们可以直接求它的面积而不必求助积分学。这个三角

形宽是 1, 高是 2, 所以它的面积是
1
2
bh =

1
2
(2× 1) = 1

我们可以用另一种方法确定这块区域的面积 (估计能够得到相同

的答案), 利用积分求面积。图 L-5 表明当把从 0 到 1 的这个区间分成

五个相等的子区间, 并引入相关的矩形时所得到的情况。

显然这五个矩形的面积之和大于我们要求的三角形面积, 但是至

少它提供了第一个估测值。每一个矩形的底都是 1/5,它们的高分别是

f

(
1
5

)
=

2
5
, f

(
2
5

)
=

4
5
, f

(
3
5

)
=

6
5
, f

(
4
5

)
=

8
5
, f(1) = 2

图 L-4 图 L-5
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因此

矩形面积之和 =
(

1
5
× 2

5

)
+

(
1
5
× 4

5

)
+

(
1
5
× 6

5

)
+

(
1
5
× 8

5

)
+

(
1
5
×2

)

=
2
25

+
4
25

+
6
25

+
8
25

+
10
25

=
2
25

(1 + 2 + 3 + 4 + 5)

=
2
25

(15) =
6
5

= 1.20

如预测的那样, 这个和显然大于这个三角形的精确的面积 1。

注意, 在这个推导的倒数第二行, 我们遇到了五个正整数之和。事

实上, 如果我们是把这个 0 到 1 的区间分成 n 等份, 完全同样的推理

表明

矩形面积之和 =
(

1
n
× 2

n

)
+

(
1
n
× 4

n

)
+

(
1
n
× 6

n

)
+ · · ·+

(
1
n
× 2

)

=
2
n2

(1 + 2 + 3 + · · ·+ n)

此时我们必须求 n 个正整数之和。还好, 在第 J 章中我们的“没有语

言的证明”已告诉我们括号里的和是

n(n + 1)
2

于是我们把这个和代入得到

矩形面积之和 =
2
n2

(1 + 2 + 3 + · · ·+ n) =
2
n2
× n(n + 1)

2

=
n2 + n

n2
=

n2

n2
+

n

n2
= 1 +

1
n

用语言表述, 它说的是 n 个矩形的面积之和比 1 总共大 1/n。

当然, n 个矩形永远也不可能给出问题中的区域的精确面积。所

以我们求当 n 趋近于无穷大时的这个和的极限来得到精确面积
∫1

0

2tdt = lim
n→∞

(矩形面积之和) = lim
n→∞

(
1 +

1
n

)
= 1
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因为当分母 n 无穷增加时, 1/n 趋近于零。

这就是前面我们用几何公式求得的答案。积分采用了一个非常迂

回的途径才得到了相同的答案。但是其意义是, 我们的几何公式只适

用于三角形, 而积分的思想适用于非常复杂的图形。利用积分, 我们可

以确定抛物线、双曲线和其他很多已超出初等几何范围的曲线下的面

积。正是由于这个方法具有如此的一般性才使得它威力强大。

不过,当我们的函数变得更加复杂时,求矩形面积之和的过程以及

求极限的过程也会变得相当复杂。如果我们的目标是能够自动且用相

对直白的方法确定面积的话, 那么捷径就是关键。17 世纪 70 年代中

期在巴黎期间, 戈特弗里德�威廉�莱布尼茨找到了这个捷径。

这个捷径就是我们现在所知道的微积分基本定理, 它非常特别的

名字预示着这是一个非常重要的结果。这个定理是基本的, 不仅因为

它能够把对面积的评估转变成一个容易的问题, 而且还因为它把表面

上不相关的导数和积分的概念联系起来。这个定理因此成为连接微积

分的两个分支的重要纽带。

返回到一般曲线 y = f(t)。如图 L-6 所示, 考虑从 t = 0 到 t = x

之间它下面阴影部分的面积 (我们选择以 0 为左端点反映了 17 世纪

普遍的习惯, 同时也使下文简单些。) 设 F (x) 表示这个面积。即用莱

布尼茨的记法：

F (x) =
∫x

0

f(t)dt

注意, F 实际上是 x 的函数, 因为当 x 向右边移动的时候, F (x) 或者

说在 0和 x之间曲线下的阴影面积也随着变化。函数 F 就是一个“面

积累加器”函数, 它的值依赖于 x 被向右边放置多远。

我们的目标是寻找关于 F 的某类公式。这样的公式就能够使得我

们只需把 x 代入到 F 里就可以确定这个面积
∫x

0

f(t)dt

如果我们能够知道 F 的等式, 积分就自动完成了。
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图 L-6

我们如何去寻找它呢? 真的很奇怪, 这个技巧不是直接去求 F 而

是去求它的导数。即我们要确定 F ′(x), 然后根据这个去推断求 F 本

身的公式。这样做好像太费周折了, 但是相比其成果这些周折还是很

值得的。

这里,希望读者回到第 D章看一下,在那里引入了导数的定义。根

据导数的定义, F 的导数是

F ′(x) = lim
h→0

F (x + h)− F (x)
h

所以我们取 h的一个较小的值。根据 F 的定义,我们知道 F (x+h)

是曲线 y = f(t)在 t = 0到 t = x+h之间所围成的面积,就如同 F (x)

是曲线在 t = 0到 t = x之间所围成的面积。因此, F (x + h)−F (x)(这

就是上面导数表达式的分子)是它们的面积之差;总之, F (x+h)−F (x)

是图 L-7 中阴影带的面积。

一般无法确定这块区域的确切面积, 因为它的上方是以不规则曲

线 y = f(t)的一部分为边界的。因此,我们没有办法,只能近似求解这

块区域的面积。

为了做到这一点, 画连接 (x, f(x)) 和 (x + h, f(x + h)) 的直线, 如

图 L-8所示。结果得到一个梯形。它的底是 f(x)和 f(x+h),而高 (两

图灵社区会员 cindy282694 专享 尊重版权



164 数学那些事儿：思想、发现、人物和历史

个平行底之间的距离) 是 h。因此, 根据第 H 章中的梯形面积公式, 我

们求得

面积 (梯形) =
1
2
h(b1 + b2) =

1
2
h[f(x) + f(x + h)]

图 L-7

图 L-8

现在, 我们使用这个梯形面积近似求得图 L-7 中的不规则带的面积。

即, 如果 F 是面积累加器函数, 那么

F (x+h)−F (x) =不规则带的面积 ≈梯形的面积 =
1
2
h[f(x)+f(x+h)]
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整理上式后得

F (x + h)− F (x)
h

≈

1
2
h[f(x) + f(x + h)]

h
=

f(x) + f(x + h)
2

(∗)

最后, 为了确定导数 F ′(x), 我们取当 h → 0 时这个表达式的极

限。这样做了之后, 这个区域的面积和梯形近似面积的差就消失了。

另外, 只要原来函数 f 性质相当好, 那么我们就会发现当 h → 0 时

f(x + h) → f(x + 0) = f(x)。最后把所有这些结果结合起来, 我们得到

微积分的基本定理：

F ′(x)= lim
h→0

F (x + h)− F (x)
h

根据导数的定义

= lim
h→0

f(x) + f(x + h)
2

根据上面的(∗)

=
f(x) + f(x)

2
因为f(x + h) → f(x)

=
2f(x)

2
= f(x)

现在应该停下来回到我们的问题。这样长长的推理实际上实现了

什么?

首先, 回想一下原来的目标：寻找下面积分的一个简单的表达式

F (x) =
∫x

0

f(t)dt

我们发现的不是 F 的等式而是其导数的等式。而且 F ′(x)恰恰是 f(x),

这就界定了我们要求的面积的函数。

为了以不同方式表示它, 我们需要求 y = f(t) 下的面积。我们从

f 开始, 结合这个函数得到 F , 然后微分 F (即微分这个积分) 再次得

到 f。微积分基本定理说函数 f 的积分的导数是 f。这正如加法的逆

运算是减法, 除法的逆运算是乘法一样, 微分与积分也互为逆运算。微

积分的这两个伟大的思想因此结合到了一起。微分和积分是同一枚硬

币的两个面。
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我们最后给出两个例子以示我们之前的努力都是值得的。第一,返

回图 L-4 的三角形面积, 在那里我们不得不估算
∫1

0

2tdt

此时 f(t) = 2t, 我们设

F (x) =
∫x

0

2tdt

微积分基本定理说 F ′(x) = f(x) = 2x。换句话说, F 是导数为 2x 的

函数。但是在第 D 章我们已明确指出 x2 的导数是 2x。所以我们得出

结论 F (x) = x2。

从这里开始, 图 L-4 的面积就很容易求了。我们知道∫x

0

2tdt = F (x) = x2

把 x 替换成 1, 我们得到

三角形的面积 =
∫1

0

2tdt = F (1) = 12 = 1

图 L-9

这就是之前我们已经两次得到的答案。

所有事情似乎都是一致的。

说到第二个例子,我们要回到第 B

章,并回顾一下我们对蒙特�卡罗的讨

论。我们使用这个概率来估测曲线 y =

8x−x2 所围起来的湖的面积,如图 L-9

所示。

利用刚刚发展的思想,我们可以精

确地确定这个湖的面积。注意,这是抛

物线下的面积。大部分人,甚至是记得

三角形或者梯形面积公式的人也没有

办法求抛物线下的面积。这恰恰是积

分学的工作。

我们把湖的面积表示成：
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∫8

0

(8t− t2)dt

(在这里, 表示构成湖岸的函数时, 我们使用的变量是 t 而不是 x)。引

入面积累加器

F (x) =
∫x

0

(8t− t2)dt

对于这个问题, f(t) = 8t − t2, 所以微积分基本定理告诉我们 F ′(x) =

f(x) = 8x− x2。

据居第 D 章的导数法则以及数学家所谓的反导数, 我们得到

F (x) = 4x2 − 1
3
x3

这是因为 4x2 − 1
3
x3 的导数是

4(2x)− 1
3
(3x2) = 8x− x2 = f(x)

于是, 根据基本定理, 有
∫x

0

(8t− t2)dt = F (x) = 4x2 − 1
3
x3

所以, 设 x = 8, 这个湖的面积为
∫8

0

(8t− t2)dt = F (8) = 4(82)− 1
3
(83) = 256− 512

3
= 85.333 3 · · ·

回想一下, 利用蒙特�卡罗方法估测, 这个湖的面积是 84.301。这

个结果非常近似刚才得到的精确值 85.333, 这表明大数定律和微积分

基本定理都能够正确计算。

最后, 我们通过两句忠告来结束本章。首先, 正如读者已经看到的

那样, 完整的积分理论比我们在这里揭示的要复杂得多。我们所讨论

的部分相当粗浅而且不严格,因为其中的例子都是精选的,而且还有很

多逻辑不足。因此,它只能反映早期不成熟的积分思想。当后来的数学

家充分掌握了这一思想后, 他们遇到了非常令人难以理解的理论障碍,

而这些障碍也只是在 19 世纪的近代才得以解决。
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我们的另一个忠告与我们关系更密切：戈特弗里德�威廉�莱布

尼茨有资格分享属于他的荣耀。说到历史的捉弄, 就是他生活在牛顿

的时代, 如果说牛顿天才这颗明亮的星星使莱布尼茨在公众记忆中的

形象黯然失色,那么可以证明牛顿这颗明星将会使所有星星都失色了。

但是, 数学界还是给莱布尼茨以充分的肯定。与牛顿一样, 他发现

了微分和积分的伟大思想, 并且认识到微积分基本定理是二者之间的

桥梁; 与牛顿不同的是, 他与敏悟的世界分享了这些成果。因此, 莱布

尼茨启发了其他人,特别是伯努利兄弟,通过他们个人的研究和相互交

流, 他们构思了今天我们所知道的这门学科。就某些现实意义来说, 我

们的微积分是莱布尼茨的微积分。

该说的都说了, 该做的都做了, 在数学历史上这样一个重要时刻,

重要的事实是这两个伟大的天才同时发挥着作用, 而不是一个人：牛

顿和他的同辈戈特弗里德�威廉�莱布尼茨。
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本章有些老套。对整个团体的不恰当描绘有可能带来不公正, 甚

至很有可能遭到指控,但我们还是要在此插上几句,探讨一下公众对数

学人物的看法。

大街上普普通通的男男女女, 当他们从任何方面去考虑数学家时,

他们往往都认为数学家聪明、不实际、超刻板、不善社交、全神贯注、

沉默寡言、近视, 或者用更综合一点的形容词, 他们有点书呆子气。这

是正确的评价吗? 数学家真的就表现出这样的个性特点, 还是他们是

这些流传的错误概念的牺牲者呢?

几年前, 受人尊敬的数学家及作为教师特别受人爱戴的斯坦福大

学教授乔治�波利亚谈及了这个问题。根据一生的经验, 波利亚总结

出两个共同特征：(1) 数学家们都有些心不在焉, (2) 数学家都行为古

怪。[1] 这两点提供了很好的出发点。

心不在焉的说法似乎一语中的。很多关于数学家的民间传说都说

他们总是错过约会、投错重要论文或者丢失眼镜。例如,有一个反复被

提及的关于维托尔德�胡尔维茨 (Witold Hurewicz)的传说,他是一位

非常有名的数学家, 他开着车来到纽约, 停好车后去办事, 然后坐着火

车回家了。第二天,发现自家的停车位是空的, 胡尔维茨就打电话报警
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说发生了偷盗案。[2]

波利亚讲述了 20 世纪初期新到哥廷根大学的一位年轻的数学教

授的故事。这位新手希望去受人尊敬的数学家大卫�希尔伯特的家中

表示一下敬意。他把自己好好打扮了一番, 然后敲响了希尔伯特家的

门, 应邀进来做一下简短的介绍。这位年轻人摘下帽子, 落座, 开始喋

喋不休地说起话来。他很快就超过了款待他的时间。希尔伯特正全神

贯注地思考一个令人费解的数学问题。就这样过了几分钟后, 希尔伯

特觉得自己已经想得很明白了。于是他站起身来拿起这位年轻人的帽

子, 客气地说了声再见就离开了。你也许能够猜测到这位客人的反映,

呆呆地一个人坐在这位教授的客厅里。[3]

那些心不在焉的数学家的传说肯定不只局限于 20 世纪。阿基米

德就是在洗澡时做出了重要的发现,全身赤裸地跳出浴池,兴奋无比地

在大街上奔跑, 但是遗憾的是没有穿衣服。我们常听说艾萨克�牛顿

在房间里工作非常投入, 以至于忘记吃给他送来的饭。有时, 当他在餐

厅走动时,牛顿“漫不经心地走着,趿拉着鞋,袜子也没穿好,披着一件

大白袍, 头发根本没有梳理过”。[4]

还有 19世纪伟大的心不在焉的数学家之一,德国的彼得�古斯塔

夫�勒热纳�狄利克雷。狄利克雷是哥廷根大学数学教授高斯的继承

人, 人们经常不仅把他描述成心不在焉, 而且还说他是“出了名地”心

不在焉。据说狄利克雷过于全神贯注, 因此忘记告诉他的亲家他们的

第一个孙子出生了。后来这位爷爷知道了这个消息后, 非常生气, 于是

发牢骚说狄利克雷至少应该会写“2+1=3 ”吧。[5] 直到死, 狄利克雷

的大脑也没有离开研究, 的确是一位把心不在焉发挥到极至的人。

许许多多这一类故事似乎在说走神是数学家们遭受的一种长期的

困扰。然而, 并不是每个人都相信这一点, 所以为了公平起见, 我们简

要地提一下利兹大学的约翰�鲍尔斯的反面观点。在一篇谈及数学家

发呆的具有争议的文章中,鲍尔斯非常直白地发表了下面的言论,力挺

这些非常聪明的群体, 他说：“认为数学家心不在焉的想法是绝对错误

的。有一个权威性证明显示他们不是, 但是遗憾的是在这里不能提供
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这个证明, 因为它似乎丢失了。”[6]

严肃的数学家们遭受这种疾病的困扰是不足为奇的。毕竟他们每

天都在思索最抽象的概念、最无情的逻辑、最难以应对的挑战。一般

的学生觉得持续一个小时只研究一个问题是一件耗神的事, 但是很多

人又如何能够想象持续几个月甚至几年去攻克这样一个任务呢? 这必

要的精力集中是令人敬畏的, 而心不在焉也是一种必然的结果。正是

心不在焉的牛顿说他仅通过“不断地思考”做出了伟大的发现。

彼得�古斯塔夫�勒热纳�狄利克雷

(穆伦堡学院惠允)

当人花几年时间不断地思考诸如素数分解或者角的三等分等问题
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时, 就不会奇怪他们忽视了他们的头发一类的事情。与数学永恒的美

相比, 物质世界开始显得如此乏味, 如此反复无常, 如此地短暂。因此,

数学家忘记取车就没有什么可惊讶的了;的确,他们经常忘记他们自己

有车。他们的身体也许是在椅子上休息, 但是他们的大脑正在穿越不

同的领域。

正如上面提到的那样, 波利亚还认为数学家都是行为古怪的人。

这也许是一个一目了然的情况, 因为任何人, 当他用毕生精力去考虑

这些素数或三等分问题时, 他们就会不由自主地表现出一定程度的古

怪。当然, 表面上, 大多数数学家的行为举止很正常, 与银行家及律师

没什么两样。但是对于训练有素的观察家, 某些迹象就会出卖他们。

其中一个例子就是他们的服饰。似乎很清楚, 数学家们选择服饰

时着眼于舒服而不是款式。诸如男人的领带一类非常荒唐的习惯时尚

对不折不扣的理性数学家来说也许是令人愤怒的。人们发现他们很少

着装丝绸服饰或者灰色法兰绒西装,而是喜欢穿棉衬衫,后面印有诸如∫∞
0

e−x2
dx =

√
π

2
这样的题字。很多人对鞋的选择是凉鞋加黑短袜。还有另外一些人说,

所谓打扮就是穿上一双新运动鞋。

就此, 我们应该提一下一幅数学家的漫画, 他穿着实验室的白大

褂, 站在写满符号的黑板前。事实上, 数学家花很长时间注视着黑板上

的符号。但是他们从来不穿实验室的白大褂。这样的外表在数学家身

上是不会出现的, 就像在相扑场上看不到摔跤手这样的外表一样。漫

画家, 记下来吧。

毫无疑问, 男性数学家会胡子拉碴。满脸胡须是教授的非正式装

束, 也许因为修面没有用 (如果男人们需要净面, 那么为什么总是有小

胡须从下巴上长出来呢?)。常识表明, 大约有 50％的男性数学家是一

脸的胡须。只有这样的地方,你才可能遇到更多大胡子, 那就是圣诞集

会, 或者是《屋顶上的提琴手》的谢幕上。

还有就是眼镜。这非常普遍。有多少次当数学家发呆时,他们把自

己的眼镜放错了地方,但是总体上,还是可以看到他们是戴着自己的眼
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镜专注地看, 尽管他们凝视的对象也许是无形的方程或者是看不见的

多边形。

人们还知道数学家都有与众不同的幽默感,是常常被说成“干燥”

的那种幽默, 也许被说成“烤干”的幽默更精确。接下来再把这种幽默

分成两个范畴, 这里分别把它们称为“低级”数学幽默和“高级”数学

幽默。

低级幽默指的就是有意使数学术语发生混淆。在过去的十几个世

纪,数学家们已经生成很多专业术语。其中一些术语,如同伦或者是微

分同胚等只局限于少数专家享用。而另外一些,如矩阵、参数等已经成

为普通语言, 在日常事务中它们经常被用错。然而, 还有一些情况, 日

常生活中的词汇被借用或引用到数学家的词典中来。但它们有非常精

确的数学意义, 例如域、群和束等。

所有这一切使得数学家能够高兴地把这些词汇的专业含义与这些

词汇的通常意义交换。他们把同行的集合称为“有限群”, 并发出会心

的笑声。他们把双胞胎的集合描述为不相等但“同构”。当情况取得进

展时, 数学家就说它有一个“正导数”。

数学家还利用近音词开玩笑。每个人都会听说过这样的笑话, 把

单词“斜边”用一种大型哺乳动物的名字来代替。常数 π 也许是取笑

烤制甜点 (pie) 的最常用的恶搞双关语 (参见第 C 章中的漫画)。在第

G 章对《几何原本》的讨论中, 我们极力克制着才没有使用那个被滥

用但又非常优美的副标题“这里在观察正常锁骨”
①
。

幸好, 还有远比这些低级的双关语更高级的数学幽默。它们通常

涉及一些曲解逻辑的事情。稍稍考虑一下, 就可以由某些逻辑矛盾产

生这样的幽默。逻辑驾驭者的数学家们发现当逻辑这辆车掉轮子时很

有趣。

我们先举一个波利亚的例子。晚年回首一生, 波利亚回顾了他对

哲学这门学科的长期影响, 并写道：“谁是哲学家? 答案是：哲学家是

① 原文是“Here’s looking at Eu-Clid”其中 eu 在医学上是正常之意, 而 clid 在医

学上是锁骨之意 (通常用于前缀)。——译者注
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这样的一个人,他知道所有事却不知道其他任何事。”[8] 这一妙语是数

学家们觉得很有趣的一种逻辑变通。

物理学家沃尔夫冈�泡利说了一句类似的话。泡利才华超人, 但

同时也非常傲慢, 一次在讽刺一个新同僚时, 他说了一句非常滑稽的

话：“他太年轻, 而且早已太无名了。”[9] 此外, 还有斯蒂芬�博克对一

个隐士和他的梦想的描述：“杰只知道从书本中获得学识, 但自己一点

都不想去实践。”[10]

这种逻辑的使用或误用在数学家亨利�曼恩的故事中也表现得很

充分, 据说亨利�曼恩开车带几个同事到辛辛那提参加学术会议。由

于不熟悉辛辛那提的街道, 曼恩迷路了, 他的同事尽管很不安, 但仍然

保持安静, 终于他们意识到他已经错误地进入单行道。但是曼恩不理

睬他们的警告。他说这条街不可能是单行道,因为他们的车一直沿着一

个方向前进, 而且其他很多交通工具都从另一个方向向他们驶来。[11]

这些都是完全颠覆了逻辑的例子。下面这个故事的幽默在于英语

发音的不合逻辑。波兰数学家马克�卡茨移民来到美国, 并设法掌握

有时候令人费解的英语。令他着急的是那些结尾拼写相同却有不同发

音的单词。例如,结尾的“ow”有时候发长音 O,如在 grow或 know中,

而有时候同样的结尾却发音完全不同, 如在 cow 或 how 中。当然, 单

词 bow 却有两个不同的发音, 结合了这两种情况中最糟糕的部分。

一直与这一现象搏斗的卡茨教授突然意识到 snowplow 更加稀奇

古怪,因为同样的“ow”在同一个单词中却有两个不同的发音。注意到

这些之后, 他格外小心地去回忆它的不合逻辑的发音。遗憾的是, 他却

把这两部分的发音交换了,把本来与 grow-cow有相同韵律的 snowplow

按 cow-grow 的韵律念了出来。[12]

最后, 是另一个别有风趣的故事。在一次数学会议的会下, 一位年

轻的崇拜者向著名的数学家宾 (R. H. Bing)要签名。拿着宾的签名,她

让另一位著名数学家保罗�哈尔莫斯在同一张纸上签名。然后她手里

拿着这张如同数学论文的东西让下面的数学家一一签了他们各自的大

名：吉尔伯特和苏利文, 露丝和格里格, 西斯科尔和伊伯特。
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当她把这份奖品给她的一位同事看时,这位同事立即说：“我出 25

美元,你把它给我吧。”此时,另一位更聪明的数学家突然冒出一句：“很

好, 但如果你让我在这些人的下面写上我的名字, 我出 50 美元。”

以上这些例子展示了数学家之间所崇尚的一种幽默。略加思索,普

遍的反映不一定是对这样的幽默发笑, 而是很欣赏它。数学幽默既不

是下流话也不是闹剧, 而往往是非常理智的。有人猜测《活宝三人组》

粉丝俱乐部几乎没有数学家。

如果服装和幽默、古怪和心不在焉让数学家与众不同,那么他们共

同的特性可以看成是某种防御机制。他们确实是在数字中寻找力量。

例如, 人们普遍有这样的印象, 数学家只不过是会计师, 他们日复

一日地把一列数加起来。数学家和诗人乔安妮�格罗尼面对这样的看

法, 利用下面的诗句淋漓尽致描绘了这样的场景：

误解

啊, 你是一位数学家,

他们带着羡慕或者轻蔑说着。

然后, 他们说,

我可以雇用你为我记账。

我思考了一下账目,

偶尔,

我自己记账,

就像偶尔清扫高高的架子上的灰尘一样。[13]

人们误解了数学家吗? 肯定是。他们被轻视了吗? 毫无疑问。当

某人被介绍说是一位数学家时, 就时常会听到下面这两条评语“我讨

厌数学”或者“我害怕数学”, 当然也可能把这两条结合到一起“我既

讨厌又害怕数学”。

为什么数学家总是遭到这样评论的轰击呢? 为什么很多人都把这

门学科看成如同没有麻醉的眼外科一样呢? 他们是不是在童年受到数

学家的刺激了? 调查之后, 你会发现数学恐惧症的两个共同源头：要
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不就是这位回答的人有一个可怕的数学老师, 要不就是他已经认识到

他本身的确缺少数学才能。

前者, 即没有好老师的借口相当普遍,而且相当值得关注。忘记诸

如自己的结婚纪念日或者总统名字的那些人却能够非常清楚地记得十

几年前讨厌的代数老师。琼斯先生或者史密斯女士是否如说的那样真

的非常可怕,或者这些不好的记忆是否有更深层更黑暗的起因,这些需

要我们反省。

然而,虽然成千上万的人以糟糕的数学老师为借口,更普遍的解释

则是,“我从来学不好数学, 也永远不想学数学”。这是每一位数学教

师听到过上百次的自白。它暗示数学的好坏是一种遗传。正如某些人

一出生就有蓝眼睛一样, 一些人一出生就有学数学的才能。如果你不

是天生如此,那么你注定是一个数学不行的人,没有什么能够改变这种

命运。

不太容易消除人们的这种观念。在数学上遇到困难的人马上下结

论说, 这种失败是因为他们的命运所致,而不是因为他们自己。很少有

人会提出相反的结论, 那就是稍微用功学习就好。

所以, 数学家遭到猛烈的攻击。其他学科的同仁很少遇到这样的

状况。很难想象在历史课上会有下面这样的交锋：

教授：“乔治, 内战时期的美国总统是谁?”

乔治：“嗯⋯⋯嗯⋯⋯嗯⋯⋯很抱歉, 教授, 我从来学不好历史。”

遗憾的是, 有些人一边喊着数学恐惧一边又很珍爱它。即便是对

受过高等教育的人来说也是如此。如果一位数学家吹嘘说他从来没有

读过一句诗,那么他会被人们贴上无知蠢人的标签。然而, 承认自己是

数学盲的诗人经常以顶着这顶文盲帽子而感到很自豪。真是不公平。

缺乏对数学的理解就不能领会数学思想的真正意义。想象下面这

样的场面：

我们在一次鸡尾酒会上看到很多有学识的男男女女, 自我吹嘘地

聊着天。一名生物学家站到钢琴的前面, 正向一名全神贯注的听众讲

解科莫多巨蜥的进食习性, 而此时沙发旁边一些人正在热烈讨论着加
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利福尼亚葡萄酒的酒香。这些话题不仅对专业人士来说可以理解, 对

一般的听众来说也能理解, 甚至对那些非爬虫学家或大厨来说也能理

解。

交谈突然停了。在一个角落里, 一名数学家喝了一口姜汁无酒精

饮料, 笨拙地抚弄着一个塑料铅笔筒, 嘴里念叨着：
∫∞
0

e−x2
dx =

√
π

2

交谈停止。玻璃容器碰撞声没有了。出现了死一般的沉静。人们

看表的看表, 找外套的找外套。很多人露出恐惧的样子。派对结束了。

事实上, 上面的公式
∫∞
0

e−x2
dx =

√
π

2

不仅是正确的, 而且是我们理解正态概率分布的关键。而正态概率分

布则是统计推断的核心。医学研究、投票数据以及其他很多重要问题

都依赖于这个公式的正确性。因此, 它比科莫多巨蜥和佐餐葡萄酒对

现代生活意义更重大。然而, 几乎没有非数学人士对这一串符号所蕴

含的威力表现出哪怕是些许的感激之情。只有那些数学家才真正“了

解”。作为一个团体, 他们必须尽最大可能去应对公众对他们的不理

解。生活真是很辛苦。

因此, 如果你遇到一群人, 他们带着眼睛, 有些发呆, 所有人都认

真地谈论着,其中一些人穿着短袜和凉鞋,但却没有人穿着实验室的白

大褂; 如果他们是几个人围着一个三角形桌子在说一些没有意思的俏

皮话; 或者如果他们所有人都不觉得《活宝三人组》有意思, 那么你可

以打赌, 你面前的这些人是研究数学的。请对他们友善些。
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这一章要讲一个特殊的数和它永恒的伴侣自然对数的故事, 这个

数记为 e。乍看起来, 它们既不特殊也不自然。相反, 直觉告诉我们它

们似乎没有什么意义。我们的目标是去解释其中的原因, 此时直觉是

错误的。

我们先从 e开始。当然,“e”是英语字母表中的第五个字母, 但是

数学家的 e是一个实数,其十进制表示为 2.718 281 828 459 045⋯。尽

管每个人都知道这个在英语中使用最频繁的字母“e”是不可或缺的,

但是非数学人士也许惊讶于数学中的“e”同样是不可或缺的。为什么

这个比 2.75 略小的数要比其他任何数, 比如 2.123 79 ⋯或者 3.554 19

⋯或者其他的普通的十进制数, 都重要呢?

在回答这个问题之前, 我们必须解释 e 是如何定义和计算的, 也

就是它是从哪里来的。它有两个来源, 但是它们是逻辑等价的, 一个是

极限, 一个是无穷级数。首先我们讨论极限定义模式。

考虑下面的表达式
(1 + 1/k)k

其中 k 是一个正整数。如果 k = 2, 我们有

(1 + 1/2)2 = (1.5)2 = 2.25
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如果 k = 5, 我们得到

(1 + 1/5)5 = (1.2)5 = 2.488 32

如果 k = 10,
(1 + 1/10)10 = (1.1)10 = 2.593 74 · · ·

等等。数学家总是准备着把某些事情推到极限,设 k 无限增大,并定义

e = lim
k→∞

(
1 +

1
k

)k

用语言表述就是, e 是表达式 1 + 1/k 的 k 次幂当 k 无限增大时的极

限。在计算器的帮助下, 我们得到 e 的十进制展开的前几位：

k 1 +
1
k

(
1 +

1
k

)k

10 1.1 2.593 742 46 · · ·
100 1.01 2.704 813 83 · · ·
1000 1.001 2.716 923 93 · · ·
1 000 000 1.000 001 2.718 280 47 · · ·
1 000 000 000y 1.000 000 001 2.718 281 83y · · ·

∞ e
显然, e≈ 2.718 281 83。

再稍稍做一些工作就可以证明更一般的结果：

公式 A lim
k→∞

(
1 +

x

k

)k

= ex

在上面的公式中, 当我们取 k → ∞ 时的极限时, 原本括号里面的

x 变成了 e 的幂。注意, 如果我们设公式 A 中的 x = 1, 我们就回到了

前面的结果

lim
k→∞

(
1 +

1
k

)k

= e1 = e

生成 e 的第二个方法是求下面无穷极数的和

e = 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

+
1
5!

+
1
6!

+ · · ·

= 1 + 1 +
1
2

+
1
6

+
1
24

+
1

120
+

1
720

+ · · ·
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其中, 分母是我们在第 B 章中所介绍的阶乘。在这个级数中加入越多

的项, 我们就越靠近 e 的值。

当然, 这两个生成 e 的公式看起来差异很大。然而, 可以证明

lim
k→∞

(
1 +

1
k

)k

= 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

+
1
5!

+
1
6!

+ · · ·

因此, 估测下面的式子是很有启发意义的。

1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

+
1
5!

+
1
6!

+
1
7!

+
1
8!

+
1
9!

+
1

10!
+

1
11!

上面这个和是 2.718 281 83,这是由上面的极限定义的 e的一个相当精

确的近似值。

于是,使用这种级数的方法,我们可以求 e的任意次幂,换句话说,

对于任意的 x, 通过下面的方法求得 ex。

公式 B 1 +
x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+ · · · = ex

例如, 为了估测 e2, 我们把 x = 2 代入到公式 B 中, 并把比如说

前十二项加起来。其实这就是当我们在科学计算器上按下数字 2,再按

下 ex 键时它所做的, 我们可以看到输出：e2 = 7.389 056 099 · · ·。
在数学历史中, 与这个 e 关系最密切的就是莱昂哈德�欧拉, 我

们已经在第 E 章中遇到过他, 贯穿全书的其他什么地方我们也会遇到

他。正是欧拉为这个常量选择了这个符号, 也是他领会到了这个常量

的重要性。在图 N-1 中, 重现了他在 1748 年的论文《无穷分析引论》

的一段, 我们看到欧拉引入了我们刚才所说的公式 B, 但他写的是 ez

而不是 ex, 给出了 e 长达 23 位的十进制表示。[1]

我们已经描述了定义和计算这个特殊数的两种方法。但是为什么

还要烦恼呢? 它为什么重要呢? 它为什么又是自然的呢? 正如我们将

看到的那样, 它的用途几乎无穷无尽。

一个应用就是关于银行存款利息增长问题 (这是一个与我们所有

人都有关系的话题, 但愿如梦里那样)。确定复利的公式说的是, 如果

我们在年利率为 r％时投入 P 美元, 此时利息按每年复利计算 k 次,

那么一年后我们的存款总额是
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P

(
1 +

0.01r

k

)k

美元

这就是银行家知道并喜爱的结果。

图 N-1

欧拉引入 e

(理海大学图书馆惠允)

举一个例子,假设我们在投资回报利息为 10％的情况下投资 5000

美元, 每年年底计算一次复利。其意思就是 1 月 1 日投入的钱, 其

间不取出, 那么到了 12 月 31 日, 这笔将增加 10％。在这个案例中,

P = 5000, r = 10, k = 1(按年复利计算)。这个公式告诉我们在一年的

年底, 我们的钱数总额是

P

(
1 +

0.01r

k

)k

= 5000
(

1 +
0.01× 10

1

)

= 5000(1 + 0.10) = 5000(1.10) = 5500(美元)

好的。但是,假设这家银行决定如下分段分配利息：不是一年只给

10％, 而是每六个月给 5％。这称作半年复利。作为投资者来说, 这样

有利可图吗?
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在上面的利息公式中, 除了现在 k = 2 之外, 其他都相同, k = 2

是因为我们每年有两个利息周期。所以一年后, 我们的钱总额是

P

(
1+

0.01r

k

)k

=5000
(

1+
0.01× 10

2

)2

=5000(1.05)2 =5512.50(美元)

这个投资回报稍微好些。

酝酿这样一个想法。如果这家银行更频繁地支付利息, 比如是一

个季度、一个月, 或者每天, 那么我们也许会得到更多的好处。为了对

此做一下研究, 在各种利息方案下, 计算一下我们的钱数总额：

按季度复利, 我们设 k = 4, 这一年的年底我们的钱数总额是

P

(
1 +

0.01r

k

)k

= 5000
(

1 +
0.01× 10

4

)4

= 5000(1.025)4 = 5519.06(美元)

这个结果相当好。下面是按月复利计算, 此时 k = 12, 钱数总额是

P

(
1 +

0.01r

k

)k

= 5000
(

1 +
0.01× 10

12

)12

= 5000(1.008 333)12 = 5523.57(美元)

这个结果更好。下面再按天复利计算 (k=365), 此时钱数总额变成

P

(
1 +

0.01r

k

)k

= 5000
(

1 +
0.01× 10

365

)365

= 5000(1.000 273 97)365 = 5525.78(美元)

流着贪婪的口水, 我们设想着如果这家银行不是按日复利计算而

是按小时、按分钟, 甚至是按秒。事实上, 为什么不设想所有可能的利

息计算中最好的情况：即连续地计算复利利息。那么我们就不必为下

一次利息支付甚至等待一毫秒。我们设想着把年 10％的利率分解成无

穷多的复利周期,无限短的连续周期中的一个。就如树的成长一样, 我

们的钱在增加, 不是大量的突长, 而是连续地向上运动。

形式上, 说复利计算是连续的, 意思是我们设复利周期数 k 趋向

于无穷。所以, 一年连续的复利计算之后, 钱数总额将变成：

lim
k→∞

P

(
1 +

0.01r

k

)k

= P

[
lim

k→∞

(
1 +

0.01r

k

)k
]

= P e0.01r(美元)
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其中 0.01r 担当着公式 A 中的 x 角色。正如承诺的那样, 这里展现了

e 的全部荣耀。

对于我们的例子来说, 在一年 10％的连续复利计算的情况下, 初

始投资 5000 美元变成

5000e0.01×10 = 5000e0.10 = 5000(1.105 170 918) = 5525.85(美元)

这是在年利率为 10％时最好的可能结果。

在确定银行存款连续增长中 e 非常有用, 无需惊讶的是在其他连

续增长类型中它也会出现。例如,人口 (这也可以是人口数量或者是细

菌数量)可以看成是连续增长,人口出生率与现有人口成正比。这样的

理论是英国经济学家托马斯�马尔萨斯于 1798年提出来的,用来解释

人口增长,半个世纪后他的著作被另一名科学家引用,这个人就是杰出

的查尔斯�达尔文。[2]

图 N-2

在这样简单的人口模型下, 时

间 t 内存在的人口数为 P (t), 它可

以用下式表示：

P (t) = P0en

其中, P0 是最初的人口数量 (也就

是我们进行这项调查时的数量), 而

r是增长比率常数。注意,这与上面

的连续复利利息公式相类似。

举一个例子, 我们从有盖培养

皿里的 P0 = 500 个细菌开始, 观察到一个小时之后细菌变成 800 个。

这就带来一个增长模型, 其中, 经过 t 小时之后, 细菌数将是 P (t), 其

中 P (t) 是

P (t) = 500e0.47t

图 N-2 给出它的图像。注意, 对于小的时间值 t, 即当 t = 1, 2, 3

时, 这条曲线还是相当平坦的。其解释是在这个过程的初期细菌数增
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长适中。但是随着我们向右移动,也就是说随着时间的推移, 这个图像

开始向上喷射, 更陡峭地向上。这反映了细菌幼小个体的繁荣,在盘子

里细胞分裂, 繁殖溢出了盘子, 到了桌子上, 最后到了走廊上。

更具体地说来,在 t = 1小时,公式说我们有 P (1) = 500e0.47 = 800

个细菌 (这是我们已经知道的)。经过 t = 10 个小时持续地增长, 这个

公式告知 P (10) = 500e0.47×10 = 500e4.7 ≈ 55 000 个细菌, 如果繁殖持

续整整一天 24 个小时, 最后我们达到的细菌数量是

P (24) = 500e0.47×24 = 500e11.28 = 39 600 000

如果这个过程不受限制, 持续一周, 此时我们将有的细菌数是

P (168)= 500e0.47×168 = 500e78.96

≈ 10 000 000 000 000 000 000 000 000 000 000 000 000

这肯定会导致一场流行病。这些数字和它们陡峭上升的图像显然说明

细菌数按“指数增长”。

然而,在这一推理过程中很容易发

现一个不足之处,因为无论是人口数量

还是细菌数量都必须有一个上限。最

终细菌会用尽食物、水或空间。因此,

没有限制的增长是不切实际的增长。

因此, 数学家们改进了他们的方

法,考虑了在人口增长过程中固有的限

制条件。其中有一个改进后的模式称

为逻辑斯谛(logistic)模型,它导致这样

的一个方程：

图 N-3

P (t) =
Kert

ert + C

其中, P (t)仍然是时间 t时的人口数量,而K是一个称为饱和度(satura-

tion level) 的数, 给环境所能够支撑的程度附加一个上限。

图 N-3给出了一个逻辑斯谛增长曲线。对于较小的时间 t,这个图

像与前面的模型类似。这反映出这样一个观察到的事实：人口增长初
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期是没有限制的。但是, 随着时间的推移, 我们沿着图像向右移动, 我

们就见证了当图像接近 P = K 的这条线时, 人口的增长趋于平稳。这

是人口接近它的饱和度时的图像表示。

当然, 我们掩盖了关于这些方程的起源的诸多技术点。另外, 生物

学家甚至设计了更玄妙的模型来反映自然状态中人口的行为。(例如,

如果抗生素进一步限制了细菌的增长时将会发生什么?) 然而, 对于我

们的目标,其中重要的一点是人口增长依赖于数 e。它很自然地描述了

我们周围的生物世界。

很多其他现实生活的情况也与这个数 e 不期而遇。考虑下面这样

一个事例：一位硫酸制造商有一个 100 加仑的大桶, 其中装满 25％的

酸和 75％的水的溶液。这位制造商想要冲洗这个大桶, 其方法就是以

每秒 3 加仑的速度从桶顶上注入清水。为了防止溢出, 同时在桶底以

同样每秒 3 加仑的速度把桶中的混合物排出, 如图 N-4 所示的那样。

图 N-4

显然, 这个过程将连续不断地稀释这个大桶中的混合物。而且显

然这种情况的精确动态远不是这样简单。注入的水并不是只取代酸。

相反, 被注入桶内的一些清水正作为混合物的一部分再次被排出桶外,
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而同时一些酸却保留在溶液中。制造商所面临的问题是确定在冲洗过

程进行了 t 秒之后, 酸的百分率。

这个问题的分析要借用积分技术, 它产生了下面的 P (t) 方程, 任

意时间 t 时桶中酸的百分率为：

P (t) =
25

e0.03t
％

在这个方程中 e 的重要性再一次充分地显示出来。

我们再具体看一下这个方程。开始时,这只大桶里装有 25％的酸。

注入清水和排出混合物进行 t = 5 秒之后, 其中物质的浓度变小, 成为

P (5) =
25

e0.03×5
％ =

25
e0.15
％ = 21.52％

过了 1 分钟, 酸浓度变成

P (60) =
25

e0.03×60
％ =

25
e1.8
％ = 4.13％

如果这位制造商继续这个过程 15 分钟, 即 t = 15× 60 = 900 秒, 这只

大桶中将含有微量的酸

P (900) =
25

e0.03×900
％ =

25
e27
％ = 0.000 000 000 047％

总之, 15 分钟后这只大桶已经被冲洗干净了。

如果我们回想一下第 B 章中讲述的雅各布�伯努利的工作, 就会

明白我们是在不同的环境下遇到了 e。在那里我们看到投掷一枚均匀

的硬币 500次后正好得到 247个正面的概率是由下面令人恐惧的公式

给出的：

500!
247!× 253!

(
1
2

)247 (
1
2

)253

这种概率计算是不可能直接进行的。但是, 利用一点数理统计的知识

就可以知道这个概率的近似值可以由下面的式子给出

1
2
√

250π

[
1

e0.025
+

1
e0.049

]

上式中的 e 因某种看似无法解释的原因再一次起着重要的作用 (π 也

如此, 它也同样看似是荒谬的)。化简这个表达式得到 0.0344, 所以在
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投掷 500 次硬币之后, 我们大约有 3.44％的概率得到 247 个正面。这

个例子说明了概率论一个公认的真理：如果一个公式在统计世界非常

重要, 那么其中可能就含有 e。

因此, 在数学中 e 的意义极其重大, 在理论与实践中都起着重要

作用。当我们冲洗大桶或者投掷硬币时它存在, 当我们赚取利息或者

观察细菌繁殖时它也存在。颇像狄更斯小说中的人物, e一直在最意想

不到的地方出现。但是, 狄更斯的人物的出现或再现都要求读者接受

这样的假设, 即无论多么不可能的事都在情理之中, 而 e 的出现和再

现只要求我们对数学稍稍有些了解。

然而,这只是这个故事的一半。发现 e的威力很重要,但是把这个

过程反过来也同样很重要。考虑下面的例子。在把 x = 2代入到公式 B

后, 我们看到 e2 = 7.389 056 099。假设在我们知道 ex = 7.389 056 099

之后, 反过来确定 x。当然这很容易得到 x = 2。

但是,如果我们知道 ex = 5,我们又如何求得 x呢?我们也许可以

猜测各种 x 值, 利用计算器上的 ex 键, 最终确定这个答案即可, 但是

这种方法似乎有点绕。

我们的援救是“逆指数”过程,它撤销 ex 所做的一切。完成这一任

务的函数称为自然对数(natural logarithm), 或者更熟悉的 natural log,

在大部分数学课本中都是这样表示的,而计算器上它的键是“lnx”。毫

无疑问它是整个数学中最重要的函数之一。

对于本章的目标, 它的一个重要性质是下面的反演公式：

ln(ex) = x

在符号形式下, 它说明了我们上面用语言所表达的意思：自然对数撤

销指数运算。即如果我们开始用 x 计算 ex, 然后把 ex 置入自然对

数, 我们就返回到起始点 x。当 x = 2 时, e2 = 7.389 056 099, 而

ln(e2) = ln(7.389 056 099) = 2,这与计算器的计算一样。知道了 ex = 5,

为了求得 x, 我们在这个式子两边取对数得到

ln(ex) = ln 5
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但上面的关系告诉我们 ln(ex) = x, 因为 ln 5 = 1.609 437 912, 所以我

们可以得出
x = 1.609 437 912

概括起来：不是从 x开始并确定出 ex,数学家经常要另辟路径,从

ex 开始, 这样就能够以此确定 x 本身。正是在这样的情况下自然对数

赢得了自身的生存。尽管我们将在第 P章和第 U章再次与它相遇,但

是这里, 我们利用犯罪领域的一个案例来说明 lnx 及其法则和对数的

使用。

午夜时分警察们被召集到一个血迹斑斑的谋杀现场, 在那里他们

发现埃迪 (绰号“黄鼠狼”) 的尸体, 他是个惯犯, 跟黑社会有关系。到

达现场之后, 警员们注意到当时气温是适中的 68◦F, 而尸体的体温是

85◦F。早晨 2:00,在提取了指纹并提审了嫌疑犯之后,尸体的体温进一

步下降到 74◦F。

根据一条秘密消息,警察抓获了克莱尔, 她是埃迪的梦中女友。克

莱尔在路易斯酒吧里度过了一个晚上,喝得多了点,可能威胁过埃迪的

生命。晚上 11:15 她怒气冲冲地离开了。这看上去似乎是很清楚的案

件。

幸运的是, 克莱尔知道自然对数。她还知道牛顿的物体冷却法则,

这是热量消耗理论的基础。牛顿法则说的是一个物体冷却的速度与它

的温度和它周围的温度之差成正比。用我们日常的话来说就是, 当一

个物体比外面空气越热, 它的冷却速度就大, 所以它就迅速变冷; 当它

比周围环境热的不多时, 它的冷却速度就小, 因此它就慢慢地变冷。

牛顿法则适用于任何正在变冷的物体, 无论是刚出烤箱的热乎乎

的土豆还是躺在人行道上已经死去了的尸体。活人是不会变冷的。人

类的新陈代谢确保人类体温维持在 98.6◦F 左右。但是, 没有生命特征

的人停止产生热量, 因此根据牛顿法则它就会如土豆一样变冷。

把上面的语言描述转化成简练的数学公式并利用微积分, 克莱尔

导出了下面的方程 T , 这是午夜之后 t 小时尸体的温度：

T = 68◦ +
17◦

e0.5207t
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再一次注意到 e的出现。利用计算器, 你可以验证在午夜,即 t = 0时,

这具尸体的体温是

T = 68◦ +
17◦

e0.5207×0
= 68◦ +

17◦

1
= 68◦ + 17◦ = 85◦F

这正是警察刚到达时确定的体温。同样在早晨 2:00 时, 即当 t = 2 时,

这个公式告诉我们尸体的温度是

T = 68◦ +
17◦

e0.5207×2
= 68◦ +

17◦

2.8349
= 68◦ + 6.000◦ = 74◦F

这个数字再一次验证了警察的观察。换句话说, 这个公式对我们实际

拥有的这两个数据都运作得很好。

但是,克莱尔要面对的最关键的挑战是确定最后遇到埃迪的时间。

她必须利用这个公式反推这个冷却过程, 从而计算当埃迪的体温是正

常体温 98.6◦F 时的最后时间 t。当然, 这就是他死亡的时间。从这点

开始向前推算, 死亡的埃迪只开始冷却他的脚后跟 (和其他部位)。

所以, 我们把人类正常体温的 T = 98.6◦ 代入到冷却方程中得到

98.6◦ = 68◦ +
17◦

e0.5207t

把上面方程两边减去 68◦, 然后再交叉相乘得到 (30.6◦)e0.5207t = 17◦,

把这个方程两边除以 30.6◦, 得到

e0.5207t =
17◦

30.6◦
= 0.5555

我们的目标是求 t。为了实现这一目标, 克莱尔对这个方程两边取对

数：
ln(e0.5207t) = ln(0.5555)

此时,因为 ln(0.5555) = −0.5878,用前面的反演公式得到 ln(e0.5207t) =

0.5207t。于是有

0.5207t = ln(e0.5207t) = ln(0.5555) = −0.5878

因此在时间 t = −0.5878/0.5207 = −1.13 小时, 埃迪的体温是 98.6◦F。

这里的 t是负的,表示的是距午夜的时间。其解释是直接的：午夜

之前 1.13 小时, 体温是 98.6◦F。换句话说, 大约在凌晨 12:00 的 68 分
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钟之前埃迪威索开始冷却, 也就是说他死亡了。这就可以确定他死亡

的时间是晚上 10:52。但是在那个时候克莱尔正在路易斯酒吧喝酒。她

有这样一个非常有利的不在场证明。

在审判时,克莱尔的律师一一介绍了上面的证据,非常有说服力地

引用了“自然法则和自然对数”,在由数学上十分老到的人们组成的陪

审团面前赢得了无罪的宣判。要感谢自然对数, 它维护了正义。

法医一定知道自然对数。遗传学家、地质学家以及那些研究动态

现实世界现象的每一个人都知道自然对数。撇开直觉, 它是一个非常

重要、非常普遍的有用思想。我们相信, 在考虑了上面证据的基础上,

本书的读者陪审团将裁决数 e 和它的另一半, 即自然对数, 虽被人们

严重忽略, 但其自身并无过失。

参 考 文 献

[1] Leonhard Euler, Opera Omnia, Vol. 8, Ser. I, B. G. Teubneri, Leipzig,

1922, p. 128.

[2] Charles Darwin, The Autobiography of Charles Darwin, Dover, New York,

1958, pp. 42–43.
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对于数学最早的源头没有什么持续不断的踪迹。这一类信息已经

无可挽回地丢失,就像我们不能确定谁说了第一句话,谁唱了第一首歌

一样, 我们同样不知道谁发现了这最早的数学。

但我们的确知道算术和几何的基础可以追溯到很远。在有历史记

载之前, 在写历史之前, 人类已经发现了如“众多”或“数”这样的一

些概念, 存在支持这些发现的文化遗产。一根来自非洲的骨头至少有

10 000 年之久, 它上面有一些只能解释成计数记号的东西。[1] 在这段

史前的时间里,我们的祖先在计数某些东西,这些刻入到骨头里的记号

给他们, 也给我们提供了他们计数的永久记录。数学也许有一个朴素

的开始, 但是它已经上路了。

显然, 本章的话题不是局限于某一个地点, 这与说书、音乐或者艺

术有其各自唯一的发源地不同。历史记载中出现的数学概念来自世界

不同地区, 正如我们在第 H 章讨论毕达哥拉斯定理时看到的那样, 同

样的原理可能在多个地区出现。这不仅表明了数学的普遍性, 同时也

反映人类趋向于数学化的普遍倾向性。

在本章, 我们概览一下若干早期数学的重要事件。带有一定程度

上的随意性, 我们的综述局限于公元 1300 年之前的这段时期, 局限于
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埃及、美索不达米亚、中国和印度这四个地区的各项发现,这是人类文

明支柱的四大文明。

埃及数学至少可以追溯到 4000 年前的史前时期。学者们已经破

译了一些公元前 1500年前的草纸卷宗,其中有一些无可争议是关于数

学的。也许最著名的草纸书是公元前 1650年左右的《阿梅斯草纸书》,

它是以抄写这本书的抄写员的名字命名的。1858年在埃及,这本 18英

尺长的文献被人购买, 现在它被保存在大英博物馆里。在这本文献中,

这位抄写员阿梅斯发誓：“洞察存在的一切,知晓所有隐秘。”[2] 尽管这

本草纸书还不足以实现这一野心勃勃的誓言, 但是他的确还是让后人

领略了埃及的算术和几何。

《阿梅斯草纸书》中有很多数学问题以及这些问题的相应求解。通

常这些问题都是我们今天所说的“故事问题”, 与它们的现代副本有

着相同的格调 (和相同的人为加工)。例如,《阿梅斯草纸书》的第 64

个问题是：

把 10 赫卡特的大麦分给 10 个人, 使得公差是 1/8 赫卡特的大麦。[3]

代数功底好的人很快就会引入 x作为分给第一个人的大麦的赫卡

特数量。那么第二个人得到的是 x + 1/8, 第三个人得到的是 x + 2/8,

以此类推直到第十个人得到的是 x + 9/8。因为要分配的大麦总量是

10 赫卡特, 所以我们可以得到下面的方程：

x +
(

x +
1
8

)
+

(
x +

2
8

)
+

(
x +

3
8

)

+
(

x +
4
8

)
+

(
x +

5
8

)
+

(
x +

6
8

)

+
(

x +
7
8

)
+

(
x +

8
8

)
+

(
x +

9
8

)
= 10

在代数上, 把这个方程化简成 10x + 45/8 = 10, 所以有

x =
1
10
×

(
10− 45

8

)
=

7
16

(赫卡特的大麦)

这个结果就是分配给第一个人的大麦数量。第二个人得到的是

7
16

+
1
8

=
9
16

(赫卡特)
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第三个得到的是
9
16

+
1
8

=
11
16

(赫卡特)

依次类推。

必须强调的是,埃及人的解没有这样显然的代数特色,因为符号代

数是在几千年后才确立的。尽管如此, 阿梅斯还是正确地给出了解, 他

说第一个人应该得到

1
4

+
1
8

+
1
16

(赫卡特的大麦)

与正确答案同样重要的是它所体现出来的方法：有相同分子 1 的

分数之和。我们把这样的分数称为单位分数, 埃及人对它们的使用几

乎是独一无二的。因此, 阿梅斯对大麦问题的答案包含了三个单位分

数之和,而不是与此相等的 7/16。对于现代人来说,这既奇特又略显不

必要的复杂。

但是, 这样的做法非常适合于埃及人的记法体系：为了表示一个

倒数, 他们在整数顶上使用了一个符号, 看起来有点像一个浮动的雪

茄。现代版的对应物应该是让 2̄代替 1/2, 7̄代替 1/7。因此,上面问题

中的大麦量应该精确写成 4̄ + 8̄ + 16。这样的记法简单, 但是显然需要

1 是分子。对于埃及人来说, 所有分数都是由单位分数集合而成的, 唯

独 2/3 除外, 这个分数有自己单独的符号。

阿梅斯给出如上面那样一个非常庞大的单位分数表示法列表。对

埃及人来说这样的列表就如同计算器出现以前数学家的对数表或三角

表一样。总而言之,埃及人非常好地使用着他们的单位分数方法,当然,

对我们现代人来说, 这相当麻烦。

但是,埃及数学的贡献不仅仅局限于上面的算术问题和代数问题。

例如, 《阿梅斯草纸书》还包含一些几何问题, 可能最有趣的就是问

题 50：

一块圆形土地有直径 9 khet, 它的面积是多少？[4]

根据这一抄写员的做法,用直径减去直径的九分之一,然后再平方

这一结果就得到答案。对于这个问题, 直径 D = 9, 圆的面积是
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[
D − 1

9
D

]2

=
[
9− 1

9
(9)

]2

= 82 = 64

有趣的是, 可以从这个解中发现 π 的估测值。翻译成现代的记法,

阿梅斯说直径为 D 的圆的面积是
(

D − 1
9
D

)2

=
(

8
9
D

)2

=
64
81

D2

因为圆的真正面积是

πr2 = π

(
D

2

)2

=
π

4
D2

埃及结果相当于
64
81

D2 =
π

4
D2

根据上面的这个式子, 可以得到

π =
4× 64

81
=

256
81

=
(

16
9

)2

=
(

4
3

)4

≈ 3.1605

这个结果通常被文献引用为埃及人的 π 的近似值。作为古代的遗物,

如此的精度令人钦佩。而他们是如何得到它的呢？

尽管没有人能够确定, 但是一

种可能是圆面积是由相关的八边形

的面积代替的,如图O-1所示。直径

为 D 的圆内切于一个正方形内,然

后再除去这个正方形的四个角, 每

个角都是腰长为 (1/3)D 的等腰三

角形。剩余的就是一个八边形,它的

面积近似等于原来的圆的面积。因

为每一个除去的三角形的面积是 图 O-1

1
2
(底×高) =

1
2

(
D

3

)
×

(
D

3

)
=

1
18

D2

我们看到
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面积 (圆) ≈面积 (八边形)

=面积 (正方形)− 4 面积 (等腰三角形)

= D2 − 4
(

1
18

D2

)
= D2 − 2

9
D2 =

7
9
D2 =

63
81

D2

这个结果非常接近阿梅斯的 (64/81)D2 的值, 因此说明近似于圆面的

八边形有可能导致了埃及人的公式。

也有人不同意这种解释。[5] 但是, 利用多边形近似圆的技术却正

是阿基米德在 1500 年后用来给出他的精确估测值 π ≈ 3.14 所使用的

技术。正如我们在第 C 章中所看到的那样, 他的优良的精度源自于用

96边的多边形来近似于圆而不是上面所说的八边形。也许是阿基米德

欠了埃及祖先一笔。

尼罗河流域是早期数学思想的一个源头, 美索不达米亚的两河流

域也是一个源头。美索不达米亚的政治历史比埃及的政治历史要动荡

得多, 因为这个区域是不同的部落或派别征服和被征服的场所。尽管

这样的政权更替使得名称不够精确, 但是我们要讨论的著作通常被称

为“巴比伦数学”。

巴比伦学术的黄金时代起始于汉谟拉比时期 (大约公元前 1750

年), 差不多与埃及的阿梅斯是同一个时代。对后来的学者来说, 幸运

的是巴比伦人是在泥板上而不是在草纸上写东西。其好处是因为时间

久远草纸书容易损坏, 而厚重的泥板却很少分化。因此我们才有数千

件遗迹, 有的是完整的, 有的是碎片, 其中有不少是数学样板。

如果说单位分数是埃及数学一个公认的特征, 那么六十进制枚举

系统则是巴比伦数学的特征。历史学家长期以来对巴比伦人采用这样

的进制体系表达了他们的佩服和惊讶。他们使用两个符号：一个符号

看起来有点像 T, 代表 1, 另一个符号与我们的＜相似, 代表 10。

对于较小的数, 他们的记法是平凡的：2 被写成 TT; 12 被写成

<TT; 42 则被写成

¿
¿ TT
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等等。但是当巴比伦人的数达到 60 时, 他们的符号则有不同的意思。

如果 T 被看成占据一个位置, 那么 T 则不再是 1 而是一个 60。如果

占据一个不同的位置,那么它可能是一个 602 = 3600。于是, 82写成 T

¿ TT, 意思是一个 60 加上两个 10 再加上两个 1。注意这里的符号 T

根据它在数中的位置不同而有不同的意思。

这种创新不仅改进了表示数的方法, 而且还使得原始符号集合最

小化。相比起来,罗马数字体系不是一种位置体系,它需要一大群符号,

诸如 I, V, X, L, C, D, M。当数字变大到百万、十亿、万亿时, 就需要

引入更多的罗马字母直到他们的字母表被用尽。(当然罗马人不需要这

样大的数, 此时是国债到来的一千年前。)

同样重要的是,巴比伦人的记法使得他们可以很容易地表示小数。

一块古代的泥板介绍了这样的一个数,它的平方是 2, 我们可能会把它

写成
√

2, 它被表示成：

T ¿ TT

TT
<

¿
¿ T <

用我们的记法表示,这组编码可以简化成一串整数 1−24−51−10。巴

比伦人没有对应于十进制的小数点, 所以我们不得不确定这个表示的

整数部分和小数部分。因为
√

2 是一个比 1 大的数, 显然第一个数是

一个整数, 其余的数都是小数。

但是是哪个小数呢？在我们的十进制体系下, 小数点右边的数字

是十分之一的个数;接下来是百分之一的个数,再接下来是千分之一的

个数, 等等。采用这样的模式, 我们把 1 后面的表示翻译成 60 分之一

的个数, 下一个符号是 1/602 的个数, 或者是 3600 分之一的个数; 最

后一个符号是 1/603 的个数或者是 216 000 分之一的个数。于是巴比

伦的 1− 24− 51− 10 等于我们的

1 +
24
60

+
51

3600
+

10
216 000

= 1 + 0.4 + 0.014 167 + 0.000 046 = 1.414 213

正如我们在第 K 章中所看到的那样,
√

2 的一个九位小数估测值是

1.414 213 562,所以巴比伦人的估测值还是相当惊人的。他们最终掌握

了六十进制算术。
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从现代的角度看, 他们的体系有一个明显的遗漏：巴比伦人没有

表示零的符号。这个遗漏会导致误解, 因为＜ T 可能表示 11, 或者是

10×60+1=601, 或者是 10×3600+1=36 001, 或者是 10×3600+1×60=

36 060。当面对小数时, 则可以通过考虑上下文来避免很多混淆, 但是

引入作为“占位符”的零对于排除歧义是非常必要的。

有意思的是, 巴比伦人从来就没有迈出这一步。到了公元前第一

个一千年的中期的塞琉西王朝时期,引入了一个内占位符记法,从而使

得人们能够区分诸如 61和 601一类的数。但是,他们没有描述数末尾

的零的问题, 所以他们的记法无法区分 620 和 62 000。经过几个世纪,

真实的零最终出现在印度数学中, 而且还独立地出现在中美洲的玛雅

人的数学中。一旦出现, 它就是一个伟大的创新。

但是, 又出现了另外一个问题：为什么巴比伦人要选择 60作为他

们的基数呢？人类文化的人类学研究和考古学研究已经发现通用的基

数是 2, 5, 10 以及其他小于 20 的数。这多少与人类的解剖学特征相

关：手臂、一只手上的手指、两只手上的手指、手指和脚趾。换句话说,

人们使用身体作为参照, 以防计算出错。

但是, 为什么是 60 呢？尽管无法确切地回答这一问题, 但是一年

大致有 6×60=360 天似乎有点启发意义。研究数学起源的任何人都认

识到了天文学的影响,而且没有哪个天文学度量比一年的长度更标准。

也许一年 (大致)360 天是把数 60 提升到巴比伦算术中的一个重要位

置的关键。无论如何,它已经在诸如一分钟有 60秒,一个小时有 60分,

一个圆有 360 度这样的基为 60 的度量制中影响到我们。

巴比伦数学至少与埃及数学一样为后来东地中海的诸多发现奠定

了基础。但是这不是 2000年前数学开始发展的唯一一个地方。在亚洲

另一端的中国人已经建立起他们自己的令人钦佩的数学传统。

我们已经在第 H 章遇到了中国数学, 在那里我们看到了在《周髀

算经》中出现的毕达哥拉斯定理的证明。显然中国人对这个定理的理

解更具一般性, 从使用这个定理的问题的收集中就可以明显地看到这

一点。例如, 下面的问题就是出现在《九章算术》中的一个问题,《九
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章算术》是一个数学论文集, 它的年代可以追溯到至少 2000 年前, 有

时候把它称为与欧几里得的《几何原本》等同的中国的几何原本。《九

章算术》最后的第九章的第五个问题是：

树高为 20 尺的一棵树周长是 3 尺。有一根葛根藤盘绕到树上 7

圈, 一直到树顶。这条藤的长度是多少？[6]

如图 O-2 左边所示的那样, 这条藤以螺旋式曲线绕着这棵圆柱形

的树向上攀升。目标是求它的长度。为了实现这个目标,想象这样的场

景：设藤的根是固定在地面上的, 然后, 树被向右“滚动”了七圈。当

树移动时, 这条藤展开, 直到藤在树顶与地面之间被拉紧的最后状态,

如图 O-2 的右图所示。

图 O-2

这样就产生了一个直角三角形,高是 20,即树的高度,它的宽度就

是树干上一个点当树滚动时经过的距离。每滚动一圈, 这个点都移动

了这棵树的周长的距离,这棵树的周长是 3尺,所以这个三角形的底是

7×3=21尺。所以,我们有这样的直角三角形,两条直角边分别是 20和

21, 斜边是 c, 即这条藤的长度。根据毕达哥拉斯定理, c2 = a2 + b2 =

202 + 212 = 400 + 441 = 841, 所以 c =
√

841 = 29 尺。这就是 2000 年

前中国的大师们在《九章算术》中给出的答案。稍微清醒一下, 考虑今

天的我们将如何处理这样的藤问题。

看完几何,我们再说一下算术。中国人沉迷于幻方,这是整数的正

方形排列,每一行、每一列及两个主对角线上的整数之和相等。同所有
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古代数学一样, 很难确定这个课题原创的精确时期, 但是有一个传说,

说 5000 年前大禹从一只神秘的乌龟的背上拓印了一个幻方。尽管数

学家们更喜欢把结果归因于纯推理而不是神秘的动物身上, 但是毫无

疑问中国人是这一类数字排列的古代大师。

图 O-3

在图 O-3 中, 我们看到一个 3×3 的正方形,

它包含从 1 到 32=9 的整数。注意每一行、每一

列以及两个主对角线上的整数之和等于 15。这

是一个 3×3的幻方,它被称为洛书,对中国人来

说, 它承载着特殊的意义：协调与平衡, 阴与阳,

这把数学提升到了一种精神层面。

这个正方形并不难得到, 但是它的 4×4 或者 5×5 类似物又是什

么样子的呢？构造它们稍微需要一些技巧, 需要更精妙的理论,这些东

西不仅激起了中国人的兴趣,而且还激起了后来的阿拉伯人,乃至后来

的本杰明�富兰克林的兴趣,当政治争论变得乏味时,富兰克林就开始

调制幻方。

如果我们希望构造一个 m×m幻方,第一步是要确定每一行和每

一列以及主对角线上的数的公共和。因为我们必须把 1 到 m2 的数分

布到这个正方形里, 我们知道这个正方形里的所有整数之和是 1 + 2 +

3 + · · ·+ m2。正如我们在第 J 章所看到那样, 前 n 个整数之和是由简

单的公式
n(n + 1)

2
给出的。因此, 不考虑它们的排列, 在这个 m ×m 幻方中所有项的总

和是

1 + 2 + 3 + · · ·+ m2 =
m2(m2 + 1)

2
当然, 把这个正方形的 m 行的每一行加起来也可以得到这个和。因为

每一行的和是相同的,所以每一行的和一定是总和的 1/m,因此 m×m

幻方的每一行 (和每一列) 的和是

1
m
× m2(m2 + 1)

2
=

m(m2 + 1)
2
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例如, 如果我们希望构建一个 5×5 的幻方, 每一行、每一列及主对角

线的和一定等于
5(52 + 1)

2
= 65

剩下大部分工作就是奇迹般地排列这些数字, 但是这种初步的计算让

我们知道行和列的总和要达到多少。中国人非常有能力解决这一问题,

图 O-4 所示的 5×5 的幻方就是一个明显的证据, 这是 13 世纪的杨辉

作出的。

注意, 正如前面预测的那样, 每一行、每一列和主对角线之和等于

65。而其他内部模式是显然的。例如, 如果我们从 5×5 幻方中摘取以

13为中心项的一个 3×3的正方形 (见图 O-5),我们会发现它是一个修

正过的幻方,使用了数 7, 8, 9, 12, 13, 14, 17, 18, 19,它的每一行、每一

列和主对角线的和都等于 39。这个例子和其他“规则套规则”的例子

特别吸引那些在数字排列中追求神圣完美的人。

图 O-4 图 O-5

离开中国人,我们必须赶快提一下另外一个文明,它的贡献是最重

要的：印度的印度人文化。印度数学大致可以追溯到埃及的草纸书和

巴比伦的泥板时代, 一个迷人而且未解决的问题就是这些人们之间接

触的程度。肯定有一些人怀疑印度–中国数学之间的相互作用, 但是说

到这一相互作用的规模和趋势, 陪审团也是不可得知。

无论如何,印度人在数学方面是十分优秀的。其中, 他们最重要的

成就是三角学的发展。他们在这个领域的大部分工作渗入到后来的阿

拉伯文化, 又在 15世纪传入到欧洲。当代世界得益于伟大的印度三角

学家甚多。

图灵社区会员 cindy282694 专享 尊重版权



202 数学那些事儿：思想、发现、人物和历史

印度人还解决了一些非常奇妙的代数类问题, 尽管当时没有符号

体系。其中一个问题应该归功于婆什伽罗,也叫巴卡拉萨雅, 或者叫做

“婆什伽罗老师”, 他生活的年代大约是公元 1150 年。例如, 有一个问

题是求两个整数, 使得第一个数的平方的 61 倍比第二个数的平方少

1。用现代的记法, 这相当于求两个数 x 和 y 使得 61x2 = y2 − 1。这个

问题在 17 世纪的欧洲再一次被提出来, 给数学家们带来相当的考验,

婆什伽罗给出了这个问题的正确解。他的答案是 x = 226 153 980, y =

1 766 319 049 ,[7] 这很难不令人惊讶。

印度人还给我们留下很多具有启发性的几何结果, 其中最引人注

目的一个结果就是求圆内接四边形面积的婆罗摩笈多公式。圆内接四

边形 (cyclic quadrilateral) 是内接于一个圆的四边形, 如图 O-6 所示。

婆罗摩笈多是公元 7 世纪的天文学家和数学家, 他说边长为 a, b, c, d

的任意这样的四边形的面积由下面公式给出：

√
(s− a)(s− b)(s− c)(s− d)

其中 s =
1
2
(a + b + c + d), 称为这个四边形的半周长。

图 O-6 图 O-7

为了看一下它的应用, 考虑图 O-7 所示的边长为 a 和 b 的矩形。

当然, 通过令矩形的对角的交点 O 为一个圆的圆心, 就可以使这个矩

形内接于这个圆。因为矩形可以是圆内接四边形, 所以我们可以运用
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婆罗摩笈多公式。因此有

s =
1
2
(a + b + a + b) =

1
2
(2a + 2b) = a + b

所以有 s− a = (a + b)− a = b 及 s− b = (a + b)− b = a。因此, 这个矩

形的面积是
√

(s− a)(s− b)(s− a)(s− b) =
√

b× a× b× a =
√

a2b2 = ab

当然, 我们无需用像婆罗摩笈多公式这样强大的武器去发现矩形

的面积等于它的底与高的乘积。这颇像用联合收割机割一根草一样。

但是, 下面的例子就不是这样

初级了,它取自于古印度的课本。[8]

在这里我们要求的是边长为 a =

39, b = 60, c = 52, d = 25 的圆内接

四边形的面积, 如图 O-8 所示。如

果没有婆罗摩笈多公式的帮助, 这

一定会非常困难; 有了婆罗摩笈多

公式的帮助,很快就会给出答案。这

个圆内接四边形的半周长是 图 O-8

s =
1
2
(39 + 60 + 52 + 25) = 88

因此面积是
√

(88− 39)(88− 60)(88− 52)(88− 25) = 1764。

图 O-9
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婆罗摩笈多公式有一个有趣的推论。对于图 O-9,如果我们沿着圆

滑动顶点 D 到顶点 C,此时这个圆内接四边形就变成了三角形 ABC。

在这样的变换下, 边长 CD → 0, 所以这个三角形可以看成是“退化”

的四边形, 因此它的面积是
√

(s− a)(s− b)(s− c)(s− 0) =
√

s(s− a)(s− b)(s− c)

现在, s 是 4ABC 的半周长。有些读者也许认出来了, 这个公式就是

三角形面积的海伦公式,这是以大约公元 75年对此给出一个聪明证明

的希腊数学家的名字命名的。因此, 婆罗摩笈多公式是海伦公式到圆

内接四边形的扩展。这是几何学中一个引人注目的例子。

我们已经简要地提到了印度数学家的最伟大成就之一：在十进制

体系内引入了零。我们不可能精确地描述出这一思想的产生年代, 但

是它也许可以追溯到公元第一个一千年的中期。来自这一时期的文献

和碑文非常清楚地展示出零, 与我们今天的零看起来很像。这一发明

非常有用,不仅作为一个理论结构有用,而且作为一个计算工具也非常

有用。所以, 正是由于印度人采用了引入零的数字体系,才使得他们的

技术被与他们有来往的阿拉伯人迅速采用。到了这第一个一千年的末

期, 阿拉伯学者撰写了一本关于美妙的“印度算术”的书籍。

正是通过阿拉伯人, 最终这些思想向西流入欧洲。其中最关键的

一步就是 1202 年比萨的列昂纳多的《珠算原理》的出版。列昂纳多就

是我们今天都知道的斐波那契,他在北非渡过了他大部分年轻时光,他

在那里学习了阿拉伯语并研究了伊斯兰数学。就这样, 他掌握了我们

现在所称呼的印度–阿拉伯数字体系。斐波那契的书把这些思想带到

意大利的学术中心, 从这里开始这些思想很快就传播到了欧洲大陆。

零的故事是众多数学历史故事的典型。一种思想诞生了; 经过几

个地方和几个世纪的时间, 它得到了提炼, 并被传播开来; 它变成了国

际数学文化的一部分。数学是全世界人都能够自豪分享的杰作。

或许它应该如此。然而, 数学起源问题最近已经成为挑战西方文

明传统观点这一大战役中的一个小冲突。你会发现两个极端观点。第

一是欧洲中心论, 认为真正的数学起源于希腊, 在希腊, 数学从本土杰
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出的思想家那里获得了生命。这一学派很少承认其他地区的数学成就

和影响。

反对这一观点的是多元文化派, 他们坚持认为数学的起源应该同

时归功于地球上许多不同的人们。这一看法把诸多发现归功于非欧文

明,并坚持认为欧洲中心论的学者正试着歪曲历史,目的是要提高他们

自己的国家、宗教以及种族的地位。

无需多说,这样的争论很快升温,甚至在通常都很安静的数学大厦

内也如此。与大多数学术争论一样, 尽管真理可能在两者之间, 但是往

往是极端分子抢尽了风头。

没有人能忽视来自全世界各地的数学家的丰硕成果, 包括遭受欧

洲文明的错误和暴行排斥的那些数学家的成果。不可否认, 希腊人最

重要的贡献在于强调数学中逻辑证明的重要性, 直到今天这仍旧从根

本上刻画着数学的特征, 提高了这门学科的精妙和抽象层次, 这是前

所未有的。学者们从没有在同样久远的数学传统中发现如欧几里得的

《几何原本》和阿基米德的《论球和圆柱》那样精妙的杰作。希腊数学

是首创的, 是非凡的。当然, 牛顿、莱布尼茨以及欧拉等人的后来发现

也不会因为他们恰恰来自英格兰、德国和瑞士而失去辉煌。

但是, 同样清楚的是希腊数学不是凭空产生的。其他文化, 无论是

希腊之前还是希腊之后的文化, 都对数学的发展做出了很多贡献。与

别人分享荣誉时表现得如同失去了它一样的那些学者们常常忽视这些

事实。认为数学史之欧洲中心论解释太过于眼光短浅的学者们可以罗

列出很多明显的证据来支持他们的主张。

往往被激进的欧洲中心论者忽视的这样的一个证据来自于希腊人

自己。公元前 15世纪的希腊历史学家希罗多德写道：埃及人对面积度

量的兴趣是“几何被发现并被引入希腊之路”。[9] 非洲的埃及与南欧

的希腊之间肯定存在着接触, 而且最初的思想流向是向北的。绝无任

何半点贬低希腊数学成就之意, 但是不认可对希腊思想进程产生重大

影响的更早的埃及人, 也许是严重的误解。

巴比伦人对算术和枚举的贡献,中国人关于数论的发现,印度人的
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三角学以及后来的阿拉伯代数, 等等, 这一切融和成现代数学之盛宴,

除掉其中任意一道菜肴都将严重影响这一盛宴。

与许多遥远过去的话题一样,数学起源问题仍然没有最终的答案。

更好的学识、更大规模的翻译以及一两次幸运的考古发现都可能使我

们更加清楚地领略到数学的开始。但是, 今天关于谁第一个发现了什

么的争论要追溯到更早的事件：第 K章中描述的关于微积分优先权的

争论。像那样令人遗憾的掺杂着真理、谎言和民族自尊的争论一样,当

前的争论很有可能看不到关于数学思想起源的一个本质事实：在人类

成就的这个星球上, 承载着许许多多的辉煌。
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现在我们要返回到我们经常光顾的第 A 章：素数的性质。正如我

们已经提到的那样,素数是整个自然数体系唯一的构建模块,因此几个

世纪以来受到了人们的特别关注。

在涉及素数的很多问题中, 其中一个最有趣的问题应该是关于素

数在整数中的分布问题。它们是以一种纯粹随机的方式穿插在它们的

非素数的亲戚中间吗？或者是它们以某种规律或者某种可见的模式出

现吗？后面这个问题的答案是“有一些规律”。如果说这个答案有些

推诿和令人不满意,那么本章希望论证它的确有一个相当明显的模式。

它诠释了整个数学中最壮观的成果之一, 素数定理。

任何研究素数分布的人应该都是从一个列表开始。下面的列表是

小于 100 的 25 个素数：
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
如果这里存在某种模式的话, 那么它不是那样显然。当然, 2 之后的所

有素数都是奇数, 但是这显然没有什么太大的帮助。我们注意到, 这些

素数中有几个缺口：24 到 28 以及 90 到 96 之间没有素数, 后者是连

续 7个合数。而与此同时,我们看到某些素数之间仅相差两个单位,如

5和 7,以及 59和 61。这样的背靠背的素数,即那些 p和 p + 2的素数
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被称为孪生素数。

增加数据量,我们收集第二个 100中的所有素数,即从 101到 200：

101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

157, 163, 167, 173, 179, 181, 191, 193, 197, 199

这一次共有 21个这样的数。我们又一次看到其间的缺口,例如,从 182

到 190 之间有 9 个整齐的合数, 而直到 197 和 199 才出现孪生素数。

在全面研究素数分布的过程中,缺口 (在这之间素数相隔很远)和

孪生素数 (在这之间素数非常靠近)好像承担着重要的角色。素数之间

有更长的缺口吗？孪生素数有无限多个吗？有趣的是,第一个问题很容

易回答, 而第二个问题是数论中至今都没有解决的问题之一。

我们先从容易的问题开始。假设我们要生成五个连续的合数。使

用第 B 章的因数分解记法, 我们考虑下面这些数：

6! + 2 = 722, 6! + 3 = 723, 6! + 4 = 724, 6! + 5 = 725, 6! + 6 = 726

很容易看到这些数中没有素数, 但是一个更有意义的问题是其中的原

因。第一个数是 6! + 2 = 6× 5× 4× 3× 2× 1 + 2。因为 2是 6！和其本

身的因子, 所以 2 是和 6! + 2 的因子。因此 6! + 2 不是素数。而 6! + 3

也不是素数, 因为 6! + 3 = 6× 5× 4× 3× 2× 1 + 3, 而 3 可以整除这

两项, 因此可以整除整个和。同样 4 是 6！和 4 的因子, 因此是它们的

和的因子, 5 是 6！和 5 的因子, 因此是和 6! + 5 的因子, 6 是 6! + 6 的

因子。因为每一个数都有一个因子,因此都不是素数。所以我们生成了

五个连续的非素数。

可以肯定地说我们这样做太复杂了。因为五个连续合数 24, 25, 26,

27, 28 就满足条件啊。为什么引入因数分解, 让我们去分解这一大于

700 的数呢？

答案是我们需要一个一般的方法。如果我们要去寻找 500 个连续

的合数的话,搜索素数列表是不现实的,但是刚才我们使用的推理却使

我们能够用相同的模式给出一系列合数。

即从 501! + 2 开始, 一路取到 501! + 501, 得到一些整数。显然这

样做给出了 500个连续的整数。几乎也同样显然,它们都是合数,因为
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2 整除 501! + 2, 3 整除 501! + 3, 依此类推, 直到 501, 501 能够整除

501! + 501。因此这是 500 个连续的合数。

从 5 000 001! + 2开始利用完全相同的过程,我们可以生成 500万

个连续数, 其中没有一个素数。同样, 我们也很容易生成 50 亿个甚至

是 5 万亿个连续的合数。这样的推理产生一个惊人的结论：素数之间

存在任意长的缺口。

这个意思就是说,如果我们这样继续下去,在每一百个整数之间计

数素数, 那么我们可以取到一个数, 从这个数开始, 完全没有素数, 即

一百个连续整数都不是素数。但是,这样的状况太奇怪了。当我们得到

500 万个连续的合数时, 我们要检查每一百个整数组成的 50 000 个连

续小组, 发现其中没有一个素数！就在这一点, 似乎可以肯定素数没有

了。

相信这一结论的人建议回到第 A 章去查阅一下素数无穷性的证

明。存在如此巨大的缺口, 这个缺口如此巨大使得人类即使穷其一生

也无法计数它们, 但是, 在这些数的后面却一定存在更多的素数, 总是

有更多的素数。它们是无穷无尽的。

那么, 另一个问题又如何呢？是否同样可能存在无穷无尽的孪生

素数呢？数论学家已经与这个问题斗争了好几个世纪。即使在非常大

的数中间, 孪生素数也会不时地跳出来。例如, 素数 1 000 000 000 061

和 1 000 000 000 063 就是一个例子。但是直到今天, 也没有人能够证

明是否存在无穷多个孪生素数。这个问题至今仍没有解决。

尽管这个问题仍继续困扰着一流的数学大脑, 但是三胞胎素数的

无穷性问题还是比较容易解决的。我们说三个素数是三胞胎, 如果它

们有形式 p, p + 2, p + 4。例如, 3, 5, 7 就是一组三胞胎素数。有无穷多

组三胞胎素数吗？

为了回答这个问题, 我们首先观察到, 当任何一个数除以 3 时, 余

数一定是 0, 1 或 2。所以, 如果我们有三胞胎素数 p, p + 2 和 p + 4, 考

察 p 除以 3, 那么存在三种可能的结果。

余数可能是零。即 p 是 3 的倍数, 或者用符号表示, p = 3k, 其中
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k 是某个整数。如果 k = 1, 则 p = 3, 于是我们就可以发现这三个素数

是 3, 5, 7。如果 k > 2, 那么 p = 3k 不是素数, 因为它有两个真因子 3

和 k。于是 3, 5, 7 就是这种情况下的唯一的一组三胞胎素数。

其次, p 除以 3 的余数可能是 1, 于是对于某个整数 k > 1, 有

p = 3k+1。(注意我们可以不考虑 k = 0的情况,因为 p = 3(0)+1 = 1

不是素数。) 对于这种情况, 这组三胞胎素数的第二个数是 p + 2 =

(3k + 1) + 2 = 3k + 3 = 3(k + 1)。显然 p + 2 有因子 3 和 k + 1,

因此它不是素数。所以我们得出结论：对于这种情况,不存在三胞胎

素数。

最后,假设 p除以 3的余数是 2。那么对于某个整数 k > 0, p = 3k+

2。因此这组素数的第三个数是 p+4 = (3k+2)+4 = 3k+6 = 3(k+2)。

于是 p + 4 不可能是素数, 因为它有因子 3。没有符合这一情况的三胞

胎素数。

汇总一下我们的结果, 我们看到唯一的三胞胎素数就是最简单的

那个三胞胎素数：3, 5, 7。对问题“三胞胎素数有无穷多个吗？”的

答案是一个非常响亮的“不”。只有唯一一组。然而, 当把“三”换成

“二”时就把这个问题变成世界级问题。只一个单词就造成了如此大

的差异。

这一切已经使我们远离了我们原来的主题：在全体整数中素数的

分布是什么样的呢？一个选择是收集数据, 逐个检查, 寻找某个可能规

律的证据。我们就以这种精神进行。

这时有个习惯, 引入符号 π(x) 来代表小于或者等于整数 x 的素

数数目。例如, π(8) = 4, 因为 2, 3, 5, 7 是四个小于或等于 8 的素数。

同样 π(9) = π(10) = 4。而 π(13) = 6, 因为 2, 3, 5, 7, 11, 13 是六个小

于或等于 13 的素数。

现在, 我们来收集数据。这就是相当于计数素数并创建一个 π(x)

的表格。下面就是一个这样的表格, 在这里我们取当 x 与 10 的幂时

π(x) 的值, x 的取值范围是从 10 到 100 亿之间。
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x π(x) π(x)/x r(x) = x/π(x)

10 4 0.400 000 00 2.500 000 00

100 25 0.250 000 00 4.000 000 00

1 000 168 0.168 000 00 5.952 380 95

10 000 1 229 0.122 900 00 8.136 696 50

100 000 9 592 0.095 920 00 10.425 354 5

1 000 000 78 498 0.078 498 00 12.739 178 1

10 000 000 664 579 0.066 457 90 15.047 120 1

100 000 000 5 761 455 0.057 614 55 17.356 726 7

1 000 000 000 50 847 534 0.050 847 53 19.666 638 7

10 000 000 000 455 052 512 0.045 505 25 21.975 486 3

..

.
..
.

...
...

这个表格的最右边两列需要做一些解释。其中一列给出了 π(x)/x

的值,这个值是小于或者等于 x的素数数量的比例。例如,如果小于或

者等于 100 万的素数有 78 498 个, 则

π(1 000 000)
1 000 000

=
78 498

1 000 000
= 0.078 498

其意义是 100 万以内的素数占所有数的 7.58%; 而占 92.15%的大部分

数是合数。

最右边的一列给出了 π(x)/x 的倒数, 我们称它为 r(x)。对于 x =

10, 我们看到

r(10) =
10

π(10)
=

10
4

= 2.5

包含这一列的原因就是最终我们至少要大致确定出 r(x) 为一个熟悉

的数学实体。

这个表格里呈现出什么样的模式呢？显然当 x 增大时, 小于或等

于 x 的素数的比例减小 (可以看一下第三列)。换句话说, 当我们移向

更大的数时, 素数则成比例地变得稀少。稍微沉思一下就可明白这一

现象的合理性。毕竟, 对于素数来说, 它必须得逃脱被所有更小的数整

除。而对于小的数, 因为它有更少的前趋, 所以这种逃脱更容易发生。

因此, 7 要成为素数, 则只需在 2, 3, 4, 5, 6 之间没有因子即可, 而 551
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要成为素数, 则它必须逃脱 2, 3, 4, 5, · · · , 549, 550 中的所有因子, 这看

起来似乎是可能性更小的事件。(事实上, 551 可以被 19 整除, 所以它

不是素数。) 这就像在稀疏小雨中奔跑要比在猛烈的暴风雨中奔跑更

容易些一样, 所以, 如果一个数要避开的数更少更小, 那么它更容易成

为素数。

但是, 数学家们需要某种比诸如随着我们向前走素数变得稀少这

一类普通的观察更强大的东西。他们要寻找一个规律, 或者数学公式,

以此至少可以粗略地反映素数的分布。为此, 上面那个表就没有太多

的帮助。甚至是最敏锐的观察者也会因为不能够仅凭借这一表格而发

现某种模式而得到宽恕。

但是就在这里, 微妙、深奥且意想不到。为了发现这一模式, 我们

必须再一次考虑数 e 和自然对数。这看似相当奇妙的数 e 会与素数有

什么关系？但是, 正如我们在第 N 章中看到的那样, 这个数经常在很

多意想不到的地方突然出现。

所以, 扩充这个表格, 增加一列 er(x) 的值。例如, 当 x=10 时,

r(x) = 10/4 = 2.5, 于是我们在右边的一列记入值 e2.5 = 12.182 494。

按着这样的模式进行, 得到

x r(x) = x/π(x) er(x)

10 2.500 000 00 12.182 494

100 4.000 000 00 54.598 150

1 000 5.952 380 95 384.668 125

10 000 8.136 696 50 3 417.609 127

100 000 10.425 354 5 33 703.416 8

1 000 000 12.739 178 1 340 843.293 2

10 000 000 15.047 120 1 3 426 740.583

100 000 000 17.356 726 7 34 508 861.36

1 000 000 000 19.666 638 7 347 626 331.2

10 000 000 000 21.975 486 3 3 498 101 746.

...
...

...

尽管最右边这列没有展示出很完美的规律, 但是你可以认识到其
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中的一个基础原理：当我们向下移动时, 下面的每一项似乎大约是上

面的项的十倍。它就好像是从一行落到了下一行, 因此当把 x 增加一

个 10 的因子时, er(x) 的值也大致增加一个 10 的因子。

这一现象可以用代数表达式概括如下：

对于充分大的x, er(10x) ≈ 10er(x)

这个表达式简单地说明, 通过把输入从 x 增加到 10x 时, 新的输出

er(10x) 将大约是旧输出 er(x) 的十倍。

表面上可能看不出来, 但是这种观察是很有意义的。我们已经把

我们的目标设定为确定 r(x), 那么现在至少我们已经得到相关的公式,

即 er(10x) ≈10er(x)。的确, 这一公式不是对每个函数都适用。如果我们

能够寻找到一个服从这个规律的函数,那么对我们确定 r(x)是大有帮

助的。

我们调用自然对数。在第 N 章, 我们强调说有

ln(ex) = x

这一表达式说的是, 取自然对数可以撤销求幂的过程。但是, 反方向操

作也同样可行：如果我们从 x开始,取它的自然对数,然后用这个结果

再取幂, 我们又返回到 x。符号表示为

eln x = x (∗)

举一个具体的例子, 如果 x = 6, 则 ln x = ln 6 = 1.791 759 469, 而

eln x = eln 6 = e1.791 759 469 = 6。我们回到了起点。

所以,如果我们从 10x开始,取自然对数得到 ln(10x),然后再取幂

得到 eln(10x), 可逆性说明我们可以再一次得到 10x。即 eln(10x) = 10x。

但是根据 (∗), 显然有 10x = 10eln x。把这个两个事实放到一起, 我们

得出结论

eln(10x) = 10eln x

剩下的工作就是在上面已有的关系下考虑这个等式。即我们要比

较下面两个式子：

图灵社区会员 cindy282694 专享 尊重版权



214 数学那些事儿：思想、发现、人物和历史

er(10x) ≈ 10er(x), eln(10x) = 10eln x

它们的模式是一样的。我们做一个大胆的假设：当 x 充分大时, r(x)

大致等于 ln x。

这就是素数定理的本质,尽管我们用不同的形式重写这一关系。即

以 x/π(x) 取代 r(x) 得到 x/π(x) ≈ ln x, 然后取倒数得到如下定理。

素数定理：对于充分大的 x,π(x)/x ≈ 1/ln x。 ¥
以这种形式, 这个定理展现出它的全部荣耀。它说的是, 素数在所

有整数中的比例 π(x)/x 在 x 充分大时大致等于 ln x 的倒数。素数的

分布与自然对数有着这样的关联是非同寻常的。

当然,我们还没有给出任何证明。我们也不再证明了。我们已经粗

略地领略到了这一答案应有的意义。作一次具体的数字检验, 我们修

改我们的表格, 把 π(x)/x 及其近似值 ln x 包含进来：

x π(x)/x 1/ln(x)

10 0.400 000 00 0.434 294 48

100 0.250 000 00 0.217 147 24

1 000 0.168 000 00 0.144 764 83

10 000 0.122 900 00 0.108 573 62

100 000 0.095 920 00 0.086 858 90

1 000 000 0.078 498 00 0.072 382 41

10 000 000 0.066 457 90 0.062 042 07

100 000 000 0.057 614 55 0.054 286 81

1 000 000 000 0.050 847 53 0.048 254 94

10 000 000 000 0.045 505 25 0.043 429 45

...
...

...

这样的一致当然是不完美的, 不过随着x的增加, 它的确得到了

改进。如最后一项所展示的那样, 小于或等于100亿的素数的比例与

1/ln(10 000 000 000)只相差 0.002,所以这个近似值的误差只有千分之

二。由于某些奇怪的原因,当素数趋向于无穷时, 素数就踏入了自然对

数的节拍。

如果读者相信不曾有人看出这样的关系, 那么我们建议他再想一
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想。卡尔�弗里德里希�高斯 14 岁时写的诸多论文中有一篇论文中

有下面的式子：[1]

a(= ∞) 以下的素数 a/la
这些记述是什么意思呢？首先, 我们可以把“a 以下的素数”用现代等

价物 π(a) 替换。另外, 显然“la”就是我们的“ln a”。而“(=∞)”意思

就是“当 a → ∞”或者“对于充分大的 a”。因此, 高斯的神秘片语翻

译如下：

对于充分大的a, π(a) ≈ a/ln a

我们用 a 去除上面式子的两边得到

对于充分大的a, π(a)/a ≈ 1/ln a

这正是前面所描述的素数定理！显然少年的高斯就已经看到了这一模

式。

似乎高斯的成就与霍迪尼从被锁住并沉入水底的保险箱中逃脱的

能力没有什么不同, 也就是说, 这个孩子的才能像魔法一样。但是, 我

们不应该忘记高斯对数的异常迷恋,还有,他有着惊人的高智商,还有,

他生活在没有 MTV 的时代。

正如我们提到的那样,高期已经认识到了这种模式,但是他没有给

出证明。之后几百年也没有人给出证明。1896年雅克�阿达玛 (Jacques

Hadamard, 1865―1963) 和瓦利�普桑 (C. J. de La Vallee Poussin,

1866―1962) 利用解析数论的某些非常精妙的技术最终证明了素数定

理。这两个人除了寿命几乎一样之外, 他们还独立地几乎同时给出了

这一证明, 因此他们共同分享了建立这一数学里程碑的荣誉。

我们以一个引人注目的观察结束本章。从欧几里得时代开始到今

天,关于素数有数以千计的定理得到了证明。许多非常重要;有些非常

优美。但是, 它们当中只有一个, 也就是本章的论题, 被一致称为素数

定理。
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在 1637 年的《几何学》中, 勒内�笛卡儿评论说：“算术只包含四

种或者五种运算, 分别是加法、减法、乘法、除法和开方。”[1]

除了他不太负责任的对精确数字 (“四或五”) 的含混不清之外,

笛卡儿还是相当明确地说出了算术所允许的运算。以现代的观点看,可

以利用这些运算生成一个数系层,而每一层都是对其前趋的扩充,并同

时带来更大的代数可操作性。这种来自算术运算的数系结构既是逻辑

要求也是历史要求。

同第 A 章一样, 这次冒险旅程从自然数集合 N 开始。假设我们

在这个数系内工作, 而且我们可操作的运算只有加法。即我们可以选

择任意两个自然数, 然后把它们加起来, 并记录其结果。如果我们要把

所有可能的数对加起来,并把它们的和集中起来形成一个集合,它将是

什么样子的呢？

立刻就有答案：它仍然是自然数集合 N。数学家说自然数在加法

之下是封闭的, 他们的意思是说任何一个自然数都不会因为与其他成

员相加而逃出自然数集合 N。集合 N 对加法来说是充分的。

如果我们说的是乘法, 上面的结论一样成立。整数的加和乘仍然

是整数, 所以 N 不仅对加封闭而且对乘也展示了封闭性。到此一切
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良好。

但是, 当我们在其中引入减法时, 情况就变得糟糕了。两个自然数

的差是自然数不再为真, 例如, 尽管 2 和 6 在 N 中, 但 2−6 不在 N

中。利用减法, 我们就可以逃脱自然数集合 N。

此时, 我们面临两种选择。有一个老笑话表明了第一种选择,这个

笑话说是一个病人非常痛苦地抬起他的手臂说：“医生, 我那样做时它

受伤了。”

这位医生的劝告是：“不要那样做了。”

因此, 我们可以通过禁止作减法来克服两个自然数相减带来的缺

欠。当然, 这是荒谬的。另一个选择, 也是数学家采用的补救方法是允

许作减法, 但是相应地扩充数系。扩充后的数系, 包含负整数和零, 称

为整数, 记作 Z。

尽管下面的事实对我们来说有点奇怪, 但是很多数学家最初非常

猛烈地反对“数”的扩充想法。其中一部分原因是从希腊遗传下来的

数学的几何情结,因为很难想象有负长度、负面积和负体积。还有一部

分原因就是对小于零的量的一种哲学上的反感。因此, 我们发现迈克

尔�施蒂费尔 (Michael Stifel, 大约 1487―1567) 把负数称为“数字疯

子”, 杰罗拉莫�卡尔达诺 (Gerolamo Cardano) 同样也使用了一个轻

蔑之词“虚构的数”。这种反对负数的观点一直进入到了 18 世纪, 正

如弗朗西斯�马赛罗 (Francis Maseres, 1731―1824)男爵在下面一段文

字中说的那样：

人们曾经希望⋯⋯永远也不要允许负数进入代数, 或者把它从中

再次抛弃掉：因为如果这样做了, 那么就有充分的理由想象,那些大师

们现在对代数计算所提出的因晦涩难懂的概念而混淆和困惑的异议就

会消失。[2]

甚至笛卡儿也把负数称为假根。对于大部分数学家来说, 这既奇

怪又让人觉得困惑。

尽管如此, 数学家们还是治愈了减法的疾病, 因为 Z 中任意两个

整数的加、减和乘仍然产生 Z 中的整数。这个新数系在笛卡儿的三运
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算之下是封闭的。

接下来是除法, 这个运算给出更加根本的问题。有的时候情况很

好：例如, 6 和 2 在 Z 中, 而 6/2 也在 Z 中。举一个饮食的例子, 我们

可以把 6 个苹果分给两个人, 每个人得到 3 个苹果。

但是,如何把 2个苹果分给 6个人呢？正如喜剧演员说的那样,答

案是制成苹果酱。这种幽默相当于承认 Z 在除法之下是不封闭的, 因

为 2÷ 6 不在 Z 中。(除了这些陈辞之外, 有一次格劳乔�马克思被问

到如何把 2 把伞分给 6 个人的时候, 他回答：做个伞酱。)

适应除法可不是一件开玩笑的事情。它需要把这个数系做另一种

扩充,把它扩充到商的集合,或者用专业的行话说,扩充到有理数集合。

形式上, 有理数集合 Q 是所有商 a/b 的集合, 其中 a 和 b 是整数且

b 6=0。因此, −2/3 在 Q 中, 7/18, 18/7 也同样在 Q 中。注意, 任意的

整数 a 也在 Q 中, 因为 a = a/1, 此时后者显然是分数形式。

上面有一个限制, 即分数的分母不能为零。诸如 4/0 这样的表达

式在有理数中是不允许的。看一下这是为什么, 暂时假设 4/0 有意义,

使得存在某个数 x 有 4/0=x。如果利用交叉相乘, 我们得到 4=0×x。

但是 0×x=0, 所以我们最终得到 4=0, 这是任何人都不能接受的事实。

数学家得出结论说分母为零的商根本就不是商。被零除是算术最严格

禁止的事情。

有理数有两个重要性质值得一提。它们很有意义,因为它们是自然

数或者整数所不拥有的, 而且说明了有理数优越于它的前辈 N 和 Z。

第一个性质是 Q 在加、减、乘、除四个基本运算之下是封闭的,

当然禁止零做除数。数学家喜欢这类数系, 因为它们可以随意进行加、

减、乘、除却同时仍留在数系之内。

第二个性质是有理数是稠密的, 这是它重要的不同之处。这表明

任意两个有理数之间一定存在另一个有理数。显然整数没有这样的性

质,因为整数之间是有空隙的,例如 5和 6之是没有整数的。整数是按

照一定的步伐分布的, 每一次都让它的后继者走一个单位。我们认为

它们是离散、孤独、不连续的。
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而商却不这样。1/2 和 4/7 之间有 15/28, 而 15/28 与 4/7 之间有

31/56, 等等。一般地, 对于任意两个有理数
a

b
<

c

d

它们的均值
a

b
+

c

d
2

落在它们之间 ( 参见图 Q-1)。进一步, 把上面式子的分子和分母同时

乘以 bd, 我们看到
a

b
+

c

d
2

=

a

b
+

c

d
2

× bd

bd
=

ad + bc

2bd

所以两个数的平均数的确是另一个有理数。

图 Q-1

因为这个过程可以无限地重复下去, 所以任意两个有理数之间有

无穷多个有理数。因此, 有理数比任何沙丁鱼罐头和泡菜罐头还要稠

密。它们丰富得无法理解。

这意味着所有数都是有理数吗？答案是“不”, 当然这个答案似乎

不是那样直白。有一个方法就是考虑分数的无限小数表示。

我们都还记得小学学过的十进制小数展开。通常的笔算产生一连

串的商和余数, 例如下面是确定 5/8 的小数的过程：
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这里, 当我们向下移动余数时进行高亮显示：先是 5( 这是我们开始进

行运算的地方),然后是 2, 4和 0。一旦出现余数零,就不用再进行下去

了,我们最终得到 5/8=0.625。因为我们是在把有理数表示成无限小数

的形式, 所以我们可以附加无限多个零, 于是写成 5/8=0.625 000· · ·。
这个例子中的除法过程能够停止,它展示了两种可能中的一种。当

我们做诸如 5/7 这样的除法时, 则产生另一种可能：

此时, 这个除法过程没有停止的迹象。但是, 当我们考虑余数的序

列 5, 1, 3, 2, 6, 4, 5 时, 我们看到出现了重复。在此, 我们发现我们又

是在做 50除以 7的运算,所以我们必须进行相同的循环过程。这个小

数展开将重复出现数字 714 285, 返回到余数 5, 再次开始另外一次循

环。所以 5/7 展开是

0.714 285 714 285 714 285 714 285 · · ·
其中的关键问题是, 这样的重复是一次偶然, 还是一个普遍的规

律。很容易看到这种重复是有规律的。当被 7 除时, 余数仅有的可能

是 0, 1, 2, 3, 4, 5, 6。如果余数是零, 那么这个过程停止。否则, 不超

过六步之后我们一定会得到一个前面看到过的余数, 因为余数只能是

1 到 6 中间的一个。一旦一个余数重复出现, 除法的循环也将出现。

这里除数是不是 7 无关紧要。完全相同的推理过程表明, 当我们
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把 113/757 转换成小数时, 这一展开必将在最多 756 步之后出现重复

( 实际上它很快就出现了重复)。一般地, 当进行 a/b 时, 除法或者停

止, 或者至多在 b− 1 步之后出现重复。

因此, 我们看到任何有理数的小数展开必定出现一个重复块。无
论是第一个例子中的重复块“0”, 还是第二个例子中的“714285”, 都
是如此。有理数是循环小数。

这一标准为生成非有理数提供了方法：简单地创建一个没有重复

块的无限小数。例如下面的实数

0.101 001 000 100 001 000 001 000 000 100 000 00 · · ·
有一个 0、两个 0、三个 0 等等的串。不出现重复块。因此, 这个数
不是有理数, 所以不能表示成两个整数的商。它就是数学家所称的无
理数, 并具体解释了斯蒂费尔的深刻的评论的意义：“当我们尝试给
它们 ( 无理数) 一个一个编号时⋯⋯我们发现它们永远可以逃脱, 本

质上它们中的任何一个都无法被精确观察到。”用斯蒂费尔的话说,
在小数展开中结尾的无规律性表明无理数隐藏在“无穷广大的云雾

之中”。[3]

尽管上面引用的小数是无理

数, 但是它不是一个引起人们注意

的无理数。更加迷人的无理数应该

有这样的身份：它是被广泛当作无

理数使用的数。例如, 数
√

2, 它的

无理性早在 25 个世纪之前就得到

了古希腊的毕达哥拉斯的确认。

如果我们考虑如图 Q-2中所示

的边长为 s、对角线为 d 的正方形

时,
√

2 的重要性就显而易见了。毕

达哥拉期定理说

图 Q-2

d2 = s2 + s2 = 2s2, d =
√

2s2 = s
√

2
因此,

√
2 出现在任意正方形中, 它在高速公路标志、棋盘或者棒球场

中随处可见。
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尽管
√

2 很突出, 但是它是一个无理数。对于希腊人来说, 这一事

实似乎是一个不受欢迎的惊人事件。有一个传说, 讲的是它的发现者,

毕达哥拉斯学派的弟子希伯斯因公开发表如此不幸的事情而被暗杀。

一个生死攸关的结果应该得到特殊的关注, 所以我们给出两种不同的

无理性证明。第一种方法需要一点几何知识, 而第二种方法需要一点

数论知识。在两种方法中, 我们的目标都是要证明
√

2 不能被表示成

两个整数的商, 无论我们尝试什么样的方法都不可能。

正如我们在第 J 章中所提到的那样, 这类目标仅通过几个例子是

不可能实现的。一位化学家把 50 000 份钠放入 50 000 个大口水杯里,

见证 50 000 次爆炸也许能够产生某种东西的结论。但是, 数学家如果

选择 50 000 个分数, 发现其中没有等于
√

2 的, 也不能说他比没有开

始实验的人更接近一般性结论。

为此, 迫在眉睫的事情是需要一种更巧妙的武器。这种武器是反

证法, 它将为下面两个推理打下基础。在这两种情况中, 为了证明
√

2

是无理数, 我们先假设其反面, 即
√

2 是有理数, 以此导出矛盾。

图 Q-3

定理
√

2 是无理数。

证明 (反证法) 假设
√

2 是有理

数。那么一定存在正整数 a和 b,使

得
√

2 = a/b。在这里,我们要求 a/b

已经被化简到最小项
①
,这一条很重

要。这一要求不是不合理要求,因为

只要适当调整分数这总是可以做到

的。(例如,我们可以把 15/9化简成

5/3。)
利用

√
2 = a/b 是最小项, 构造边长为 b 的一个正方形 ( 参见图

Q-3)。根据我们早前的观察, 对角线长度是 b
√

2 = b× (a/b) = a。沿着

这条对角线截取长度为 b 的线段 AD, 做 DE⊥AC, 其中 E 在 BC 上,

①这里, a/b为最小项的意思是不存在正整数 c和 d,使得 c < a, d < b且 a/b = c/d。

最小项的概念使证明避开了最简分数的相关证明。——译者注
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如图所示。于是, 线段 CD 的长度是 AC −AD = a− b。

注意, ∠ACB 是 45◦, 而 ∠CDE 是 90◦, 所以 4CED 的另一个角

也是 45◦。从而 4CED 是等腰三角形, 于是有 ED = CD = a− b。

接下来画线段 AE, 形成直角三角形 ADE 和 ABE, 它们有公共

斜边 AE。对这两个直角三角形运用毕达哥拉斯定理得

AB
2

+ EB
2

= AE
2

= AD
2

+ ED
2

于是, b2 +EB
2

= b2 +ED
2
,从这个式子我们可以得到 EB

2
= ED

2
,所

以 EB = ED = a− b。从而有 EC = BC −EB = b− (a− b) = 2b− a。

现在, 我们关注小直角三角形 CED。因为它的两个直角边的长度

是 a–b, 毕达哥拉斯定理告知它的斜边 EC 的长度是 (a − b)
√

2。另一

方面, 我们已经证明了 EC 的长度是 2b− a。因此 (a− b)
√

2 = 2b− a,

或者有 √
2 =

2b− a

a− b

总结到此的推理, 我们假设
√

2 = a/b 是最小项, 然后, 利用一点

初等几何知识推导出 √
2 =

2b− a

a− b

也许迹象还不明显, 但我们已经处在了矛盾的边缘。为了完成证

明, 我们需要下面四个简单的观察：

(1) 因为 a 和 b 是整数, 所以 2b− a 和 a− b 也是。

(2) 因为我们假设
√

2 = a/b, 又因为 1 <
√

2 < 2, 所以我们知道

1 < a/b < 2。把这个不等式两边乘以 b 产生不等式 b < a < 2b。

(3) 根据观察 2 中的 b < a, 我们导出 a− b 是正的, 而根据观察 2

中的 a < 2b, 我们可以导出 2b− a 也是正的。

(4)把观察 2中的不等式 b < a两边加倍,我们看到 2b < 2a,然后

两边再减去 a, 我们得到 2b− a < a。

所以, 尽管我们已经假设
√

2 = a/b 是写成正整数的商的最小项,

但是, 此时我们有
√

2 =
2b− a

a− b
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上式的分子和分母都是正整数 (根据观察 1 和观察 3), 这个新的分子

2b− a严格小于原来的分子 a(根据观察 4)。因为此时我们有了更小的

分子,所以我们可以化简
√

2的分数表示,这不符合它已经是最小项的

假设, 因此这个化简显然是不可能的。

已经出现了矛盾 (正是时候)。而整个推理是以最初的
√

2是有理

数的错误假设开始的。拒绝这一假设, 我们得出
√

2 是无理数的结论,

证明完毕。 ¥
别怪我纠缠这个数不放, 现在我们给出第二个且更短的

√
2 的无

理性证明。它的先决条件是整数的唯一因数分解原理, 我们已经在第

A 章中讨论了这个定理, 除此之外还有一个原理, 下面我们讲述这个

原理。

假设一个正整数 m 已经被分解成素数。例如, 如果 m = 360, 我

们有 m = 23 × 32 × 5。注意在这个因数分解式中素数 2 出现 3 次, 素

数 3 出现 2 次, 素数 5 出现 1 次, 其他素数, 如 7, 11, 13 等没有出现。

当然, 对于不确定的整数, 我们不能说出任何给定素数的出现次数。

但是, 考虑 m2。对于我们的例子, 有下面的式子

m2 = 3602 = (23 × 32 × 5)× (23 × 32 × 5) = 26 × 34 × 52

注意在 m2 的因数分解中, 每一个素数出现的次数是它在 m 的因数分

解中出现次数的 2倍,这表明每个素数出现的次数是偶数。因此,第一

个 m 中的 3 个 2 乘以第二个 m 中的 3 个 2 得到 m2 中的 6 个 2。类

似地, 有 4 个 3, 2 个 5, 而没有 7, 11, 13 等。

略加思考就会明白, 这一现象总会发生, 因为平方任意一个正整

数, 我们就把它的素数因子出现的次数加倍, 而且加倍导致一个偶数

的结果。(零被加倍仍然是零,它也是偶数。)总之,我们已经核实了下

面的原理：

任意整数的平方一定使得每个素数在它的素数因数分解中出现偶

数次。

到此, 我们已经为第二个无理性证明做好了准备。

定理
√

2 是无理数。
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证明 (反证法)假设
√

2是有理数。于是存在整数 a和 b,使得
√

2= a/b。

把这个式子两边平方, 并交叉相乘, 我们得到 2b2 = a2。

考虑对等式两边做素因数分解。右边出现了 a2,即整数 a的平方。

根据上面的原理,我们知道素数 2一定在这个因数分解中出现偶数次。

同时, 左边包含 b2, 同样素数 2 在它的因数分解中出现偶数次。但是

这里存在一个问题,左边是 2b2,所以有一个额外的 2存在。因为 b2 提

供偶数个 2, 表达式 2b2 在分解成素数因数时, 它一定包含奇数个 2。

因此我们导出一个矛盾, 因为我们已经证明 a2 被素数因数分解

时, 它一定包含偶数个 2, 而相同的数 2b2 的素数因数分解却包含奇数

个 2。因此, 数 a2 或者 2b2 有两个不同的素因数分解。

这是不可能的, 它违反了第 A 章的唯一因数分解原理。因此逻辑

上一定有什么事情是错误的。回头检查一下整个推理过程, 发现这一

麻烦源自于我们最初的
√

2可以写成分数的假设。我们抛弃这一假设,

得出
√

2 是无理数的结论。 ¥
用 3, 5, 7 或其他任何素数取代 2, 第二个证明可以论证

√
3,
√

5,√
7等是无理数。事实上,对于任何一个非完全平方整数 n,

√
n是无理

数。当 n 不是完全立方时, 3
√

n 也是无理数。当 n 不是完全四次方时,
4
√

n 也是无理数, 依次类推。

所以, 无理数大量存在。但是, 对于这样的无理数, 尽管它们不能

表示成整数的商, 但是至少在一个标准之下, 这些无理数还是“温顺”

的：它们都是简单整系数多项式方程的解。例如,无理数
√

2是二次方

程 x2 − 2 = 0 的解。而无理数 4
√

7 则是四次方程 x4 − 7 = 0 的解。我

们必须强调的是, 这两个方程都以整数作为系数。

这样一类数称为代数数。任何有理数 a/b 都是代数的, 因为它是

bx− a = 0 的解, 这是一个一次方程, 其系数 b 和 −a 都是整数。在这

样的意义下, 代数数可以认为是有理数的扩充, 只需要取消“一次”的

限制, 允许任意次数的方程, 只要方程的系数是整系数即可。

尽管任意有理数都是代数的,但是显然代数数不一定是有理数,如√
2 或者 4

√
7 都不是有理数。代数数包含所有有理数和大量的无理数。
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例如, 我们说无理数 1/2+
√

11 是代数数。为了证明这一点, 我们必须

生成一个特殊的多项式方程, 它是这个方程的解。作法如下：设 x =

1/2 +
√

11, 反向做代数化简来消除根号。即

x− 1
2

=
√

11 →
(

x− 1
2

)2

= (
√

11)2 = 11

展开上式的左边, 得到 x2 − x + 1/4 = 11。然后, 为了满足整系数的要

求, 把这个方程两边乘以 4, 并整理各项得到

4x2 − 4x− 43 = 0

以 1/2 +
√

11为根的整系数多项式方程就这样建立起来了。根据定义,

这表明 1/2 +
√

11 是代数数。

类似的策略可以证明诸如 √
6

3
√

5 +
√

3
这样的复杂表达式也是代数的, 因为它是下面这个方程的解,

4x12−49 248x10−37 260x8−127 440x6+174 960x4−139 968x2+46 656=0

尽管这个方程的推导显得有点庞大。

从整数出发, 通过有限次运用笛卡儿的五个允许的运算加、减、

乘、除以及开方而构建的任何实数都是代数数。坦白地讲,很难想象一

个非代数数, 一个不是任何整系数多项式方程解的数。

是欧拉首先推测了这类数的存在。他把不是代数数的实数称为超

越数,因为它超越了代数运算。[4] 因此,介绍超越数时不能说它们是什

么, 而只能说它们不是什么：它们不是代数的。

这种以否定的方法定义超越数遗留下一个存在性的问题。例如,我

们可以定义,如果海豚生活在水中则它是代数的,而如果它不是代数的

则是超越的。逻辑上这一定义没有问题。但是, 当然不存在超越海豚。

存在超越数吗？欧拉没有找到任何超越数。过了一个世纪, 约瑟

夫�刘维尔 (1809―1882)构造出一个数,并给出它是超越数的证明。他

的例子是使用无穷级数定义的：

1
101!

+
1

102!
+

1
103!

+
1

104!
+

1
105!

+ · · ·
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=
1
10

+
1

102
+

1
106

+
1

1024
+

1
10120

+ · · ·

= 0.1 + 0.01 + 0.000 001 + 0.000 000 000 000 000 000 000 001 + · · ·
= 0.110 001 000 000 000 000 000 001 000 000 · · ·

上式中当我们向右移动时, 1的个数逐渐变稀。刘维尔的证明是一件非

常了不起的工作,它彻底地确立了超越数的存在性。然而, 令人不能不

略微感到有些气馁, 因为第一个已知的超越数却是人造的。

更令人满意的是去证明已存在的著名数的超越性, 不久有这样两

个候选数引起了数学家的兴趣：我们在第 C 章中遇到的圆常数 π 和

在第 N 章出现的自然增长常数 e。

很早人们就已经知道 π 和 e 都是无理数。e 的无理性是欧拉早在

1737 年认识到的, 而 π 的无理性则是由约翰�兰伯特 (1728―1777) 于

1767 年建立的。但是, 一个数是无理数并不意味着它是超越数 ( 考虑

是无理数同时也是代数数的
√

2)。证明超越性是一个件非常困难的任

务。

e 首先沦陷了。经过非常艰苦的努力, 1873 年查尔斯�埃米尔特

(1822―1901) 证明了 e 是超越数。他的结果被认为是数学推理的伟大

胜利。刘维尔创造了一个数,并证明了这个数是超越数,与刘维尔不同,

埃米尔特必须与一个指定的对手斗争。刘维尔像是一位被要求满世界

寻找恐龙骨头的古生物学者, 而埃米尔特则被告知在他的后院寻找暴

龙头骨。

但是他做到了。这次胜利之后不久, 埃米尔特又被劝说去对付 π。

但是他拒绝了, 他的话表明这些努力需要智慧：“我不敢奢望证明 π 的

超越性。如果有人接受这一任务,那么对于他们的成功没有人会比我更

感到幸福, 但是相信我, 亲爱的朋友, 这必定要花费他们一些努力。”[5]

埃米尔特尽管是一位伟大的数学家, 但是他不想参与其他任何数的超

越性的证明。仅有一次这样痛苦的折磨已经足够了。

因此, 这项工作就落到费迪南德�林德曼 (1852―1939) 的头上,

1882 年他完成了 π 的超越性的证明。具有讽刺意味的是, 林德曼的证
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明是建立在埃米尔特的基础性和突破性的工作之上的, 事实上它没有

预想的那样困难。

至此, 这两个伟大的常数 π 和 e 被证明不仅是无理数, 而且更糟

糕：它们都不是任何整系数多项式方程的解。如果说斯蒂费尔正确地

刻画了无理数是被隐藏在“无限云雾之中”的话,那么超越数似乎是被

隐藏在代数无法达到的云雾之中。

那么, 这把我们留在了什么地方呢？笛卡儿简短的代数运算列表

开启了通向各种数系的大门,从简单的整数到本章标题中提到的商。但

是,我们已经看到商还不足以接纳
√

2的无理性,埃米尔特和林德曼证

明无论进行多少次加、减、乘、除和开方都不能产生诸如 π 和 e 这样

的数。超越数的发现如早期无理数的发现一样, 表明实数比任何人一

开始想象的任何数系都更奇怪、更复杂。
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伯特兰�阿瑟�威廉�罗素出生于 1872年 5月 18日,死于 1970

年 2 月 2 日, 享年 97 岁。几乎将近一个世纪, 他过着非常富裕而且动

荡的生活, 取得了哲学家、社会评论家、作家、教育家等头衔, 也曾是

上议院的议员和布里克斯顿监狱的囚犯。在全世界很多有声望的机构

里他都授过课,从剑桥到哈佛到伯克利。他获得了诺贝尔奖。他还结过

四次婚,并且有很多风流韵事。他因为持无神论、不可知论以及对婚外

性的支持而被咒骂。他所遭遇的一切读起来就像一本西方文明的名人

录。

本章的第一部分介绍伯特兰�罗素的非同寻常的生活。其中我们

重点引用他自己的作品或者是罗纳德�克拉克 1976年所写的传记《伯

特兰�罗素的生活》。然后我们再讨论罗素悖论,这是他的早期发现之

一,在 20世纪初给数学基础带来了冲击。以此我们希望能够描绘出这

个人物以及他的工作。

罗素令人惊讶的事情之一是, 他是传统价值观和极端激进主义的

和谐与非和谐的怪物。在某些方面, 他似乎是一位典型的英国上流社

会的产品; 而在另外一些方面, 他似乎又是这一现状的永恒的敌人。很

多照片都在三件套西装和表链上显示出他强烈的反战主张。尽管他的
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不“尊敬可尊敬的人”的誓言也许将他贴上了阶级的判逆者的标签,但

是伯特兰�罗素与他们一样有可尊敬的背景。[1]

他的祖父约翰�罗素曾经在 1846 年到 1852 年以及 1865 年到

1866年担任维多利亚女王的首相。一直活到看到人类在月球上行走的

伯特兰回忆说,当维多利亚参观他祖父的庄园时,他就坐在维多利亚的

膝盖上。显然年幼的伯特兰生来就进入了 19 世纪英国社会的最高阶

层。

然而, 即便如此权贵, 生活却很悲惨。罗素在四岁时失去了父母。

因此, 他主要由他的祖母养大, 她决定不让他在学校接受教育, 而是请

家庭教师。因此, 这位聪明且敏感的少年大部分青春年少时光都与彭

布罗克庄园的那所寂静的古老宅邸中的长辈一起生活, 被剥夺了童年

时代无忧无虑的快乐时光。据他自己的记述, 他是一个孤独和压抑的

年轻人, 花费大量时间沉思。他思考好的事情还有邪恶的事情,甚至曾

经思考过自杀。

但是,从这孤独的孩童开始直到生命的终结,罗素始终在学习一门

课程。这就是他祖母喜欢的圣经的经文, 诸如“不可随众行恶”等文字

用来描述罗素的人生是再好不过的了。[2]

时机到来时,伯特兰离开了彭布罗克庄园去剑桥的三一学院,这就

是在两个多世纪之前欢迎了年轻的艾萨克�牛顿的那所学校。因为他

的特殊背景和超常的智力, 他给人的印象是一个相当古怪的人。但是

学术生活却很适合他, 而且数学首先引起了他的兴趣。

乍一看它就很可爱。他悲伤地觉得自己在物理或实验科学等方面

没有足够的才华, 而数学这门冰冷的学科, 用他的话说, 他爱它但得不

到爱的回报, 却使他入迷。对于罗素来说, 数学能够提供通往确定和完

美之路。“我不喜欢现实世界,”他坦白说,“在一个永恒的世界里寻求

避难, 没有改变, 没有堕落, 没有进步的镜花水月。”[3] 因此, 他为数学

谱写了下面的赞美歌, 虽然有些许夸张但令人心悦诚服：

对大多数人来说, 现实生活是一种漫长而次要的东西, 是理想与

可能之间不断的妥协; 而纯推理的世界不知道妥协, 不知道现实的限
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制, 不知道创造活动的障碍为何物, 创造活动把对于尽善尽美的热烈

追求具体表现在壮丽的大厦里, 一切伟业都源自于对尽善的向往和追

求。远离人的情感, 甚至远离自然的可怜事实, 世世代代逐渐创造了一

个秩序井然的宇宙。在这个宇宙里纯正的思想好像是住在自己的家里,

至少我们某种更高尚的冲动能够在这个宇宙里逃避现实世界的凄清流

浪。[4]

正如这段话所概括的那样,论及数学的功利方面,它没有任何吸引

力。他对数学的爱是纯粹的,更有一种数学推理苦行僧的意味。在他的

《数理哲学导论》一书中, 罗素描述了两大对立的数学思想方向：“(我

们)更熟悉的⋯⋯是构造性方向,逐渐向更复杂的方向迈进：从整数到

分数、实数、复数; 从加法和乘法到微分和积分, 并向着更高级的数学

进发。另一个方向, (我们)不太熟悉,向着⋯⋯越来越高的抽象性及逻

辑简单性迈进。”[5] 正是这另一个方向, 远离应用和复杂, 趋向基础和

简洁, 它刻画了罗素数理哲学的特征。正是在这里他找到了他智慧的

归宿。

他关于数学基础的工作是在剑桥完成的, 他先是学生后来又成了

教员。在这项工作中, 他与艾尔弗雷德�诺思�怀特海合作,这是一位

颇有建树的逻辑学家, 他与罗素在学术上的合作和私人间的争斗长达

几十年之久。1900 年夏天, 一个“知识分子陶醉”期, 罗素在数理逻辑

方面取得了重要的进展。这正是这个年仅 28 岁的知识分子疯狂和兴

奋的时期, 后来他自己回忆说：“我对我自己说, 现在我终于做了值得

做的事情, 我有这样的感觉, 在我把它们写下之前我必须小心, 不要在

大街上被车撞倒辗死。”[6]

1903年, 罗素出版了一本 500页的著作《数学原则》, 后来他与怀

特海合著了《数学原理》, 共分三卷, 分别在 1910 年、1912 年和 1913

年出版。这是他们的终极愿望,要把整个数学还原到基本的、不可争辩

的逻辑概念。《数学原理》充满了逻辑符号, 挤掉了英语词汇, 因此数

学历史学家艾弗�格拉顿–吉尼斯恰如其分地描绘其中非常具有代表

性的一页看起来有点像“墙纸”。[7](第 J 章中引用了这一著作。)
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这些著作的严谨近乎无情地耗尽了罗素和怀特海的精力, 也可能

将耗尽立志要看它们的任何人的精力。它们还耗尽了他们的钱财, 因

为几乎没有人愿意去购买如此恐怖的出版物。罗素承认：“因此, 通过

我们十年的工作,每本赚了负 50英镑。”[8] 更糟的是,不清楚罗素和怀

特海是否成功地完成了他们把整个数学回归到逻辑的使命。但是清楚

的是,他们已经写成了一本著作,它在探究数学基础方面达到了空前的

深度。

第一次世界大战的前夕, 40 岁的伯特兰�罗素已经在数理哲学领

域享有声望。同时代的人也许会猜测他的余生会进一步揭示逻辑的神

秘定理。但是同辈们却猜错了,因为罗素的人生注定是向不平凡、无法

预料的方向前进。

多方面的力量,包括内在的和外在的力量推动着他,但是其中最重

要的是第一次世界大战的疯狂。罗素同大部分英国知识分子一样, 注

视着整整一代的年轻人在这场杀戮中被一扫而空。突然间,遍布各页的

逻辑符号的行进失去了其重要性。面对战争他坦白地说：“我发现我曾

经做的工作对我们所生活的世界一点用也没有, 一点关系也没有。”[9]

伯特兰�罗素陷入了麻烦。他的反战激进主义致使他于 1916年被

捕, 他被剑桥开除, 丢掉了他的护照。最后使他失去了在哈佛的位置。

但是这一切都不能使他停止对愈演愈烈的备战进行猛烈的谴责, 这必

将导致更大的潜在冲突。到了 1918 年, 罗素再一次被捕而且被押送到

布里克斯顿监狱六个月。这位贵族的儿子已经变成了正义的囚犯。

反战姿态不是他与英国政府发生冲突的唯一原因。至少还有其他

两种反传统价值观的立场。其一是他公开的不可知论。罗素不仅是特

定宗教信仰的批评家, 而且还是一般宗教信仰的批评家。他是一个认

为推理至高无上的人,认为神学把人性引入到相反和不幸的道路上。他

的谴责犀利、有力且毫不留情。例如,他写道：“任何时期,宗教越强烈,

教条的信仰越深刻, 就越发残忍。”[10] 他定期地对罗马天主教堂禁止

节育发起攻击, 而且他对基督教的其他教派也毫不留情。对于那些认

为我们的宇宙是上帝的作品的人, 罗素质问道：“如果赋予你无限的威
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力和无限的知识, 以及数百万年, 让你来完善你的世界, 你认为你不能

比三 K 党或者比法西斯党制造更好的东西吗？”[11] 他的观点可以用

他对这个世界中什么是他特别喜欢的问题的回答加以概括：“数学和大

海, 神学和纹章学, 喜欢前两个是因为它们是非人类的, 喜欢后两个是

因为它们是可笑的。”[12] 因此, 出现下面的事件也许是可以理解的, 某

个宗教杂志发表社论, 毫无同情心地错误地报导他在去中国旅行时死

亡了, 而且还说：“当听到伯特兰�罗素先生去世的消息而轻松地吐一

口气的传教士们是会得到原谅的。”[13]

但是,如果说他的宗教观点有争议的话,那么他关于性和婚姻的观

点也同样有争议。他接受的非常传统的教育根本不可能预示出如此非

传统的观点。22 岁时, 他与一位生活在英格兰的贵格会教徒, 美国人

艾丽斯�皮尔索尔�史密斯结婚。艾丽斯坚持举办一个贵格会教徒的

婚礼, 对此罗素非常圆滑地同意了：“不要想象我在宗教仪式上会怀着

一颗虔诚的心⋯⋯任何仪式都令人讨厌。”[14]

起初, 他们彼此承诺将婚姻维系到永远, 但是说到内心, 对于罗素

来说没有任何永久可言。1902 年年初的一天, 在剑桥附近骑着自行车

的时候, 罗素突然意识到他已经不再爱他的妻子了。

这一认识导致了持续了半个世纪的一系列情感纠葛, 使这位理智

的男人陷入了全世界都认为绝对是不理智的行为之中。他显然被伊夫

琳�怀特海弄得神魂颠倒,她是与他合作编写《数学原理》的男人的妻

子。他还与奥托琳�莫雷尔女士维系了长时间的恋情, 她是一位著名

的英国政治家的妻子。他们多次在昏暗的旅店客房幽会。对于这样一

位国际大师来说, 这一切相当不体面。

随着事态的进一步发展, 罗素与艾丽斯离婚, 并于1921年与多

拉�布莱克结婚。在名义上他们的婚姻持续到了 1935年,但是在 1929

年, 关于他的第二任妻子, 罗素写道：“她和我都不再制造夫妻间彼此

忠诚的任何伪装。”[15] 在这样的环境下, 1930 年当多拉与另外一个男

人有了孩子时, 他或许不会感到震惊。但是, 当她与这个男人又有了第

二个孩子的时候, 即使是罗素也已经受够了。他提出了离婚。
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这为他的第三次婚姻, 与海伦�帕特里夏�斯彭斯的结婚铺平了

道路,这段婚姻从 1936年持续到 1952年。而后,在他 80岁的时候,他

与伊迪丝�芬奇结了婚,这是布林茅尔学院的一位英语教授,他与她一

起幸福地渡过了人生的最后岁月。

这样的婚姻状况及婚外行为使得伯特兰�罗素陷入水深火热之中,

特别是因为他曾经准备讨论他关于性、贞洁和避孕等诸如此类的观点。

在 1940年发生了一次非常著名的事件,在某个宗教团体和纽约市长的

反对下, 他未能就职成为纽约市立大学的教师。宣告说罗素不适合作

教师,因为他反对宗教和支持乱交的观点。作为反击,他曾经发表评论

说热恋中的数学家与其他人没有什么不同,“也许除了不做推理的假

日会使他们的热情过剩之外, 其他都一样”。[16] 显然伯特兰�罗素花

了相当长的时间在度假。

但是, 他也花了相当的时间在工作上。就在论战的几年间, 他仍有

大量的作品出版, 其中有社会评论的书籍, 有关于教育的论文, 甚至有

为媒体写的文章。然而, 这样一位社会激进主义分子偶尔会发现他自

己为诸如《魔力》这样的杂志写文章, 而且偶尔还作为名人嘉宾出现

在 BBC电台的节目上,这略微有点不合适宜。尽管他有这样那样的观

点, 但是他被公众接纳, 其中一部分原因是伯特兰�罗素极具个人魅

力。还有一部分原因毫无疑问是他比他的敌人更长寿。

伯特兰�罗素的另外一个特点就是他很有写作才能。如提到的那

样, 他写作的主题非常广泛。无论是哲学著作 (如《我们关于外部世界

的知识》), 还是评论小册子 (如《精神废物大纲》), 或者是通俗读物

(如《如果你爱上了一位已婚男人》) 等, 这些作品都很新鲜, 富有煽动

性, 很吸引人。

他的确有不可否认的写作天赋,而且略带他那尖刻的讽刺味道。在

关于把暴饮暴食归类为犯罪的写作中, 罗素谨慎地说道：“它是一种含

糊不清的犯罪,因为很难确定对食物的合理兴趣与犯罪之间的界限。吃

任何没有营养的东西就是不好吗？如果是这样, 那么吃每一粒腌制的

杏仁我们都要冒着被诅咒的危险。”[19] 他取笑坚定的动物权利支持者
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时写道：“绝对的平等⋯⋯就会发现自己被迫承认猿与人类一样。为什

么不与猿在一起呢？我不明白他如何要反对为牡蛎投票的争论。”[20]

而且他一度拖延写自传, 他解释说：“开始我有些犹豫⋯⋯过早, 担心

有什么重要的事情还没有发生。假设我死的时候是墨西哥总统, 那么

如果没有提及这一事实, 传记就不完整了。”[21]

1950 年伯特兰�罗素获得诺贝尔文学奖之时, 他在书面语言表达

方面的才能才以最公开的方式得到了认可。但是, 在描述他成功写作

的秘诀时, 罗素却没有给作文教师提供一点安慰：

他 [一位老师] 给我罗列了各种简单规则, 但我只记住了两条：“每

隔四个单词放置一个逗号”和“除了在句子开头之外,不要使用‘and’”。

他最强调的忠告是你必须反复重写。我认真地尝试着这样做了, 但是

发现我的第一遍草稿总比第二遍的要好。这一发现为我节省了大量的

时间。[22]

贯穿他的一生, 从他的数学研究到他坐牢, 从他的众多风流韵事

到他的诺贝尔奖, 罗素与众多有趣和有影响的人交流。他的教父是约

翰�斯图尔特�米尔。我们已经提到他曾经坐在维多利亚女王的腿

上。后来他很享受与约翰�梅纳德�凯恩斯、威廉�詹姆士以及赫�

乔�威尔斯之间的友谊。 他熟悉的作家有比特里克斯�波特,

D� H�劳伦斯、乔治�萧伯纳、约瑟夫�康拉德、阿道司�赫胥黎和

罗宾德拉纳特�泰戈尔。他的学生中有路德维希�维特根斯坦和托马

斯�斯特恩斯�艾略特。在苏联, 他拜见了列宁和托洛茨基。据报道,

1920 年他在北京讲演时, 有两个年轻的激进分子参加了, 一个是毛泽

东,另一个是周恩来。他是艾伯特�爱因斯坦和彼得�塞勒斯以及温斯

顿�丘吉尔的朋友。说到温斯顿�丘吉尔, 罗素说在一次晚宴上,“温

斯顿要我用两句话解释微积分, 我做的令他非常满意。”[23]

然而,这一切似乎还不足以与伟大联系上,伯特兰�罗素在剑桥三

一学院担任艾萨克�牛顿曾经担任过的职位。尽管牛顿与罗素的个人

气质几乎没有相似之处,但这两个英国人都拥有惊人的智慧,他们二人

都把他们那个时代的数学推向了新前沿。

图灵社区会员 cindy282694 专享 尊重版权



236 数学那些事儿：思想、发现、人物和历史

我们希望研究的是这些前沿中的一个。我们回到 1901 年, 当时罗

素正在深入研究数学的逻辑基础。这项研究的前提是他要研究事物集

合 (尽管现代称之为集合, 而罗素则称它为类) 间的关系。在这些类中

“事物”的属性并不重要, 重要的是集合论的抽象逻辑。

集合的成员资格似乎平淡无奇。如果我们考虑集合 S = {a, b, c},
那么 b 是集合 S 的成员, 但 g 不是。如果我们考虑所有偶数的集合,

那么 2, 6, 1 600 都是这个集合的成员, 而 3, 1/2, π 不是。

把抽象层次再提高一点, 我们发现一个集合的成员本身也可以是

集合。对于两个成员的集合 T = {a, {b, c}}, 第一个成员是 a 而第二个

成员是集合{b, c}。或者, 设W 是一个集合, 它是由所有偶数的集合和

所有奇数的集合组成的。即

W = {{2, 4, 6, 8, · · · }, {1, 3, 5, 7, · · · }}
这个集合 W 有两个成员, 每一个成员本身也是由无限多个数组成的

集合。

集合可以有集合作为成员的事实促使罗素提出一个非常迷人的问

题：一个集合能否以它自己为成员？他写道：“我觉得好像有时候类本

身是一个成员, 有的时候又不是。”[24]

他举了一个例子,一个所有茶匙的集合,这个集合肯定不是一把茶

匙。因此, 所有茶匙的集合不是其自身的成员。同样, 所有人的集合也

不是一个人, 因此也不是其本身的成员。

另一方面, 对罗素来说, 似乎某个集合的确包含它自己作为成员。

他的例子是一个所有不是茶匙的事物的集合。非茶匙的集合中包含叉

子、英国首相、8 位数字, 等等。的确, 这些当中任何一个都不是茶匙。

但是这个集合本身的确也不是茶匙 (没有人能够用它搅拌茶), 所以它

的确作为另一个非茶匙的事物属于这个集合。

或者, 考虑所有能够用 20 个或者小于 20 个英语单词描述的所有

集合的集合 X。所有水牛的集合是 X 的一个成员, 因为它的描述“所

有水牛的集合”(the set of all buf faloes) 只需要五个单词。同样, 所有

豪猪刺的集合 (the set of all porcupine needles)(六个单词)也应该在 X
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中,生活在南美洲的所有蚊子的集合 (the set of all mosquitoes living in

South America)(九个单词) 也在 X 中。但是, 这种成员资格标准保证,

可以用 20 个或者小于 20 个英语单词描述的所有集合的集合 (the set

of all sets that can be described in 20 or fewer English words)X 可以用

15 个单词描述, 因此它也包含它自己。

显然, 每个集合都将属于两个范畴之一。或者像茶匙这样的集合,

它是一个不包含自己的集合,我们把这种情况都称之为罗素集合,或者

像 X 那样, 它本身又是其中的一个成员。

当罗素决定考虑所有不是其本身的成员的集合的集合时, 这些天

真的思考却带来了一个不祥的转向。即把所有罗素集合都收集起来形

成一个大的新集合, 我们记为 R。于是, R 中就有这样一些成员, 所有

茶匙的集合, 所有人的集合, 很多很多其他的集合。

此时, 出现了一个撼动基础的问题：R 是它自己的成员吗？即所

有罗素集合的集合是罗素集合吗？这个问题只有两个可能的答案：是

或不是。

假设答案是。那么 R是 R的一个成员。为了成为一个成员, R必

须满足成员资格标准,即上面用楷体字强调的：R不是其自身的成员。

因此, 如果 R 是 R 的成员, 那么 R 不能是 R 的成员。这个明显的矛

盾排除了对这个致命问题的答案“是”的可能性。

但是, 如果答案是“不是”, 即 R不是R 的成员又如何呢？那么 R

一定不是其自身的成员, 像我们的茶匙的集合一样, 满足进入 R 的成

员资格标准。所以, 如果 R不是 R的成员, 那么它一定自动地成为 R

的一个成员。我们再一次面临一个矛盾。

对于罗素来说,这一集合应该很简单。然而,不知何故,“每种选择

都导致与它相反的情况, 产生一个矛盾”。在这样一个他所创建的“至

今看似毫无问题的非常特殊的类”面前,他变得不知所措。这就是今天

我们所说的罗素悖论。

使用更加具体的事例来说明一下他提出的逻辑扭曲是很有帮助

的。假设一位著名的艺术鉴定家决定把全世界的油画分类成两个互斥
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的范畴。第一个范畴是由这样的油画组成的：在画布上的油画中有油

画本身的像, 当然这样的油画相当稀少。例如, 我们可以作一幅画, 标

题是内部,它画的是一个房间及其里面的家具：漂动的织物,一座雕像,

一架三角钢琴; 钢琴上方挂着一幅画, 它是油画“内部”的缩小版。因

此, 我们的画布包含它自己的像。

另一个范畴更普遍,它是由所有不包含自己的像的油画组成的。我

们把属于这一范畴中的油画称为“罗素油画”。例如,《蒙娜丽莎》就

是一幅罗素油画, 因为它里面没有展示它的缩小版本。

进一步假设我们的艺术鉴定家安排了一个巨大的画展, 它包含全

世界所有的罗素油画。经过巨大的努力之后, 这些油画被收集起来, 并

被挂在一个巨大的大厅里的墙上。这位鉴定家对自己的成就很自豪,他

雇用一位画家作一幅这面墙和上面东西的画。

当这幅画完成时, 这位画家非常准确地给这幅画起名为《全世界

所有罗素油画》,并把它送给这位鉴定家。他仔细地检查着她的作品并

发现一个小瑕疵：在这张画布上, 靠近《蒙娜丽莎》的画像是一幅《全

世界所有罗素油画》的油画像。这表明《全世界所有罗素油画》是包含

它自己的一幅图画, 因此它不是罗素油画。因此它不属于这一展览,所

以也不应该挂在墙上展示。他要求这位画家把它涂掉。

这位画家这样做了并再一次把她的作品送给这位鉴定家。经过仔

细检查之后, 他认识到存在一个新问题：这个油画,《全世界所有罗素

油画》现在不包含它自己的像了, 所以它是属于这次展品中的罗素油

画。于是它应该被挂在这面墙的某个地方以免这次展览没有包含所有

罗素油画。因此, 这位鉴赏家再一次把这位画家叫来, 要求她再画出这

幅《全世界所有罗素油画》的像。

但是,一旦这个像被加上,我们又回到了起点。这张像必须被涂掉,

这样一来它必须得到恢复,然后再涂掉,以此进行下去。经过几个往复

之后 (希望是这样), 这位画家和鉴定家将会意识到一定是什么事情出

现了错误：他们偶然发现了罗素悖论。

这一切好像完全不相关。但是, 回想一下, 罗素的工作目标是要把
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整个数学建立在不可撼动的逻辑基础之上的。他的悖论使这一计划陷

入困境。正如当高级公寓顶楼套房的居住者知道地下室开裂时会感到

很不安一样,当数学家们知道他们学科的这个基础存在逻辑缺点时也会

感到很不安。这表明整个数学事业就如公寓塔楼一样, 随时可能倒下。

不用说, 罗素对他的悖论的存在感到很震惊。他写道：“我就像虔

诚的天主教徒琢磨邪恶的罗马教皇一样琢磨这个矛盾。”[26] 罗素与逻

辑学家戈特洛布�弗雷格 (1848―1925) 之间的交流明显表现出他们的

不安,同样其他人也感到沮丧。弗雷格已经出版了《算术的基本法则》,

这是一部巨作, 目的在于揭示算术的基础。在这本书中, 弗雷格也是

以罗素导出悖论时同样的朴素而随意的方式利用集合进行研究的。罗

素把他的例子给弗雷格看, 弗雷格立即意识到这把他的事业判处了死

刑。在他的《算术的基本法则》的第二卷里, 弗雷格不得不面对每一位

学者的最大梦魇：他或她的著作就在最后的关头被宣判有错, 因为这

本书在罗素的信到来时已经准备出版了。弗雷德极度真诚而辛酸地写

道：“一位科学家最不想见到的就是在工作即将完成之际, 其基础倒塌

了。当收到伯特兰�罗素先生的来信时, 我就被抛到了这样的位置,此

时这本书就要出版了。”[27]

这一悖论的陈述是清晰的, 但是它的解决方案不清晰。经过多年

不成功的尝试之后, 逻辑学家们最终尝试着通过规定包含自己为成员

的集合不是真正的集合来使其合法化。通过这样的逻辑策略, 还有若

干已经精心创造的定义, 这样的类被宣告为不合法。

这一方法的合理性也许可以通过我们的油画故事解释清楚。允许

谈及包含自己的像的油画吗？如果《全世界所有罗素油画》包含自己

的像,那么在可能需要的放大镜的帮助下,对这幅画仔细检查将会发现

《全世界所有罗素油画》的迷你版。它里面一定还有一个全世界所有罗

素油画的迷你版。因此, 它应该像衣橱上的镜子一样永远无止境地反

射。像这样无限回归的油画不可能真正画出来。

在粗略的意义下, 这阐述了罗素设想的这一悖论的解决方案。他

写道：“包含某个族的所有成员的那个东西不能是这个族的成员。”[28]
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因此, 罗素集合中成员的自引用性是不合法的。罗素集合根本不是集

合。

经过反复的痛苦思考后得出的这一解决方案似乎很讨厌且有人为

的意味。罗素把它说成是“也许为真但绝不优美的理论。”[29] 但是重

要的是, 它把对集合的研究从朴素的前罗素领域转换到非直观领域。

伯特兰�罗素画像

(麦克马斯特大学伯特兰�罗素档案馆惠允)
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对那些对数学基础不关心的数学家来说, 整个事件似乎需要更加

深入的思考。最终罗素相信把数学还原到逻辑的终极目标不会像他年

轻时乐观预测的那样令人满意。

大脑的过度疲劳和令人失望的结果给他带来严重的伤害。罗素回

忆时说自那以后他对“数理逻辑的那种极度不愉快的心情”, [30] 甚至

多次想到自杀, 虽然他选择了放弃, 因为正如他所说的那样, 他应该活

着哀悼它。渐渐地这种失望过去了,我们看到,他仍然保持旺盛的斗志,

继续活了三分之二个世纪。

总之, 我们很难概括他漫长的一生。他是一股不可抗拒的知识力

量,是 20世纪伟大的乖戾之人。他对人类环境感到失望,立志改善它。

他被贴上恶棍的标签, 也被贴上英雄的标签。但是, 甚至他的敌人也

不能否认这个男人有捍卫自己信念的勇气。正如他的祖母忠告的那样,

他不可随众行恶。

我们用最后一段话结束对他的描述。在 1925 年的一篇《我相信》

的短文中,伯特兰�罗素给出支撑他走过他漫长而动荡的一生的线索。

这位伟大的无神论者写道：

幸福不是真正的幸福,因为它终将结束,思考和爱也失去了它们的

价值, 因为它们不是永恒的⋯⋯荡漾在传统教化神话的温暖之中, [理

性] 之窗开启之初让我们战栗, 但是最终新鲜的空气带来活力, 伟大的

空间展现出它们自己的辉煌。[31]
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球本身很简单。没有哪个三维体能够更简单地定义, 也没有哪个

三维体能够展示如此完美的对称。它绝对纯粹。

同自古以来许许多多人一样, 哲学家柏拉图也称赞它的完美。他

说宇宙的创造者“以在各个方向到中心绝对相等的距离把它旋转成一

个圆球面, 一个极其完整和均匀的图形, 因为他 (宇宙的创造者) 判定

均匀是压倒对手的绝对优势”。[1] 更近一些, (法国画家) 塞尚认识到

这种优越性, 并奉劝艺术家说：“要完全符合比例地用圆柱、球面或圆

锥来处理自然。”[2] 他的“画家眼睛”到处看到球面, 头上及脚下。实

际上,对于稀少的宇航员来说,人类大家庭自古以来就一直行走于一个

非常巨大的球面上。

球面无所不在,但它还是有不可否认的优美,本质上的单纯使其优

雅, 使其远离所有其他形状。没有哪个立体能够像球那样吸引我们的

注意。

除此之外, 球面实际上是一个数学实体。严格说来, 把球面定义为

到一个固定点有给定距离的空间中所有点的集合。当然这个给定的距

离就是半径, 这个固定点就是球心。然而, 欧几里得在用这些术语定义

球时却采用了一个更动态的观点：“保持半圆直径不变, 旋转这个半圆
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并回到它开始运动时的相同位置, 如此形成的图形是一个球。”[3]

球是由旋转的半圆扫出的图形的想法,正如图 S-1所示的那样,给

人带来运动的愉快感。当然, 它也表明一个真实的半圆一定要被物理

地在空间移动。现代数学家更喜欢植根于纯逻辑的球定义而不是那些

基于物理运动的定义。尽管如此, 欧几里得的通过运动产生球的概念

对确定它的表面非常重要, 而把所有这些方方面面综合到一起的数学

家显然是锡拉库扎的阿基米德。

图 S-1

本章的目标简单说来就是：跟随阿基米德去求球面的表面积。这

是一个诱惑他跳入深水的问题。在我们自己跳进去之前, 我们应该先

推导挑战性较小的三维图形——圆柱的表面积。

如图 S-2所示,标准的推导过程是把这个圆柱沿垂直方向切开,展

开它,并展平 (注意,假设这个圆柱既没有顶也没有底)。展开的结果就

是一个矩形,它的高是原来圆柱的高度,而它的宽是这个圆柱底面圆的

周长。如我们在第 C章中所看到的那样,这个周长是 πD = 2πr。因此,

图 S-2
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圆柱的表面积 =矩形的面积 = b× h

= (2πr)× h = 2πrh

这个推理如此简单,说明圆柱虽然是弯曲的但它不是无法想象的弯曲。

然而, 寻找球面的弯曲表面的面积却远不是这样简单。首先, 我们

不知道从什么地方开始。从圆柱那里我们得到一些启发, 我们可以尝

试着切开并展开一个球面,但是其结果不是一个简单或者熟悉的图形。

我们还可以尝试着把许多小正方形贴在这个球面的表面上从而得到它

的面积, 但是这些小正方形不能够完全包围它。利用正方形测量球的

表面积就如同把苹果和橘子比较。

这些困难都无法阻止阿基米德去探索它最深层的秘密。在第 C章,

我们提到他在数学方面取得了一系列空前绝后的成功。他自己以及后

人所认定的其中最伟大的胜利就是确定了球的表面积和体积, 这是他

的著作《论球和圆柱》中的绝妙发现。正如我们将看到的那样, 这其中

只涉及少量的几何知识, 但是它却需要一定的智慧。

数学中有这样一个公认的真理, 即一个困难的问题通常可以通过

一系列略微简单的子问题加以解决。(实际上, 在处理生活中的问题时

这也不失为一种好的训诫。) 同样, 阿基米德也没有放过这一真理, 他

没有直接进攻球面, 而是依赖于两个更容易接近的立体——圆锥和圆

台的性质。追随他的步伐, 我们导出它们的表面积公式。

假设我们有一个如图 S-3 所示的圆锥。它的底上的圆的半径是 r,

沿圆锥表面从顶点到底部的直线长度即所谓的斜高是 s。

图 S-3
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图 S-4

为了确定这个圆锥的面积,我们从底到顶部

如图所示那样剪开,然后展平这个表面得到一个

圆的一部分, 学术上把它称为扇形。注意, 原来

圆锥的斜高 s 此时变成了这个扇形的半径。

现在我们补全这个扇形, 形成一个圆, 如图

S-4所示。显然这个扇形面积与整个圆面积的比

率等于这个扇形的边缘的长度与这个圆的总周

长之比。换句话说

扇形面积

圆面积
=
扇形弧长

圆的周长

例如,如果这个扇形面积是复原后的圆的面积的三分之一,那么它

的弧长也同样是这个复原后的圆的周长的三分之一。

当然, 半径为 s 的这个复原后的圆的面积为 πs2, 而周长是 2πs。

从图 S-3 我们可以看到, 这个扇形的弧长正好是这个圆的周长在原来

圆锥底的那部分：2πr。综合这些信息, 我们得到

扇形面积

πs2
=

2πr

2πs
=

r

s

交叉相乘后得到

扇形面积 =
r

s
× πs2 = πrs

因为展平后的扇形面积正好是原来的圆锥的表面积, 所以我们已经证

明了：

公式 A 圆锥表面积 =πrs, 其中 r 是半径, s 是斜高。

阿基米德所需要的第二个表面是圆台的表面。圆台就是当一个圆

锥被一个平行于它的底的平面切割且移走它的顶部后所剩余的下面的

立体,如图 S-5所示。设 r 是这个圆台顶部圆的半径, R 是底部圆的半

径, 而 s 是这个圆台的斜高, 即它是沿着圆台表面笔直地从上圆到下

圆的直线长度, 我们必须确定这个圆台的表面积 (同样, 不包含它的顶

部或者底部)。
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要实施的最自然的方法是恢复它失去的圆锥的顶部, 然后再利用

公式 A 去求这个恢复后的大圆锥的表面积, 以及小圆锥的表面积。二

者之差就是圆台的表面积。

图 S-5 图 S-6

为了记法上的方便, 我们把这上半部分的斜高称为 t, 如图 S-6 所

示。因为上半部分圆锥的半径是 r, 斜高是 t, 所以根据公式 A,它的表

面积是 πrt。对于恢复后的大圆锥, 底部半径是 R, 斜高是 s + t, 即是

上半部分圆锥的斜高与圆台斜高之和。因此,它的表面积是 πR(s+ t)。

于是有

圆台的表面积=恢复后的圆锥的表面积−上半部分圆锥的表面积
= πR(s + t)− πrt

= πRs + πRt− πrt = π[Rs + (Rt− rt)]

遗憾的是,这个表达式里还有几个需要计算的量,因为我们需要知

道 t 的长度。而我们更希望导出一个只包含 R, r 和 s 的公式, 这些是

原来圆台的数据, 而不希望它包含这个幽灵量 t, 它测度的是已经被抛

弃的圆锥的一部分。我们的表达式尽管是正确的, 但是它却保留了某

个“挫折”的源泉。
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通过引入相似三角形的关系, 我们可以扭转这种局势。假设我们

用一个垂直平面切割这个恢复后的圆锥,以此产生了图 S-7。显然上面

图 S-7

的直角三角形 AEF 与大直角三角形 ADC 相

似, 因为它们都包含一个直角和 ∠DAC。根据

相似性,对应边成比例,特别地在这两个直角三

角形中,斜边与水平底边的比率是相同的。因此

有 t/r = (s + t)/R。交叉相乘并做代数化简得

到

Rt = r(s + t) = rs + rt 或者 Rt− rt = rs

然后, 我们把上面这个表达式代入到早前我们

得到的圆台面积的公式, 得到

圆台的表面积= π[Rs + (Rt− rt)]=π[Rs + rs]

= πs(R + r)

综上所述, 我们已经证明了如下结论。
公式 B 圆台的表面积 =πs(R + r), 其中, 圆台有上半径 r、下半径

R 及斜高 s。

使用文字描述, 这个公式表述的是圆台的表面积是 π、斜高和形

成它的底的圆的半径之和的积。

到此预备工作已经完成, 但是球面仍不见踪影。事实上, 此时阿基

米德出乎预料地把他的注意力转向了二维的圆而不是三维的球面。你

坐稳了, 不要吃惊。

在半径为 r、直径为 AA′ 的圆内, 他内接了一个边数为偶数、边

长为 x 的正多边形。为了在图 S-8 中进行说明, 我们已经使用了正八

边形 ABCDA′D′C ′B′, 但是该推理适合任意偶数边正多边形。阿基米

德画出直径 AA′ 的垂线 BB′,CC ′,DD′ 分别交 AA′ 于 F , G, H; 虚线

B′C 和 C ′D 交直径于 K 和 L;还画了一条似乎不太重要的线 A′B,它

的长度标记为 y。利用这些, 他的图形被分成很多大大小小的三角形。

这些图形中存在两个显然的结果。一个是线段 BF 和 B′F 长度
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相等, 我们称其为 b; CG 和 C ′G 也有相同的长度, 称其为 c, DH 和

D′H 的长度也相等, 称其为 d。

我们下面要做的是引用欧几里得的《几何原本》第三卷中的一个

结果,相等弧所对的圆周角相等。因为我们用的是正多边形, 所以这个

圆被这个正多边形的边分成的小弧是相等的,从而,这些弧所对的所有

圆周角都相同。因此, ∠BA′A = ∠ABB′, 因为它们分别是等弧 AB 和

AB′ 所对的圆周角; 同样的原因, ∠ABB′ = ∠BB′C = ∠B′CC ′, 等等。

在图 S-8 中, 每个这样的角的大小记为 α。

图 S-8

现在,我们跟随阿基米德寻找一系列比例。注意,4ABA′和4AFB

相似, 因为它们有公共角 ∠BAA′, 而且都有一个大小为 α 的角。根据

对应边的比例, 我们得到

AF

BF
=

AB

A′B
或者

AF

b
=

x

y

交叉相乘得 xb = (AF )y, 这个结果我们过一会儿会用到。

注意到 4AFB 和 4KFB′ 相似, 因为它们都有一个大小为 α 的

角, 且 ∠AFB 和 ∠KFB′ 是直角。于是有下面的比例
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FK

B′F
=

AF

BF
或

FK

b
=

AF

b
=

x

y

其中, 最后面的等式就是上个段落的公式的简单重复。交叉相乘得到

xb = (FK)y。

我们继续在这个圆里追击相似三角形。下一对三角形是 4KFB′

和 4KGC, 它们都有一个大小为 α 的角, 而且都含有直角 ∠FKB′ 和

∠GKC。因此有

KG

CG
=

FK

B′F
或

KG

c
=

FK

b
=

x

y

同样, 最后面的等式是上面段落的公式的重写。因此有, xc = (KG)y。

继续, 4KGC 和 4LGC ′ 相似, 因此, 同上一样, 我们有表达式

xc = (GL)y。同样, 由于 4LGC ′ 和 4LHD 相似, 由此可得 xd =

(LH)y, 而 4LHD 和 4A′HD′ 相似, 由此可得 xd = (HA′)y。

而这一连串的等式用来做什么呢？阿基米德把它们加起来得到

xb = (AF )y

xb = (FK)y

xc = (KG)y

xc = (GL)y

xd = (LH)y

+ xb = (HA′)y

xb + xb + xc + xc + xd + xd = (AF + FK + KG + GL + LH + HA′)y

化简上面的表达式, 得到更简单的表达式：

x[2b + 2c + 2d] = (AA′)y

因为右边的线段合起来就形成这个圆的直径。而这个圆的半径是已知

的 r, 我们知道 AA′ = 2r。因此我们证明了：

x[2b + 2c + 2d] = 2ry (∗)
尽管我们还不清楚阿基米德如何使用这一结果, 但是 (∗) 的关系在下
面的推理中起着重要的作用。
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在接下来的步骤中, 我们终于遇到了球面。阿基米德把图 S-8 的

整个图形关于水平轴 AA′ 旋转。正如欧几里得的定义所允许的那样,

这样的旋转将扫出一个球; 与此同时, 被旋转的多边形则产生了一个

立体图形, 它是由中间的圆台和两头的圆锥组成的立体图形, 如图 S-9

所示。

图 S-9

注意到下面这一点非常重要：每一个圆锥和圆台的斜高都是 x,这

是原来内接于圆的正多边形的边长。

现在, 我们来确定这个立体图形的表面积。对于左边的圆锥来说,

它的斜高是 x, 底半径是 b, 根据公式 A, 其表面积是 πxb。左边的圆台

斜高是 x, 上面圆的半径是 b, 下面圆的半径是 c, 因此根据公式 B, 我

们知道它的表面积是 πx(b + c)。同样, 右边的圆台表面积是 πx(c + d),

而右边的圆锥表面积是 πxd。把这些结果综合起来, 我们有

内接立体的表面积 = πxb + πx(b + c) + πx(c + d) + πxd

= πx[b + (b + c) + (c + d) + d]

= πx[2b + 2c + 2d]
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这里, 令人惊奇的是, 我们得到了包含上面的 (∗) 的一个表达式。作替
换, 我们就到达了这一漫长推理的关键点：

内接立体图形的表面积 = πx[2b + 2c + 2d] = π(2ry)

现在,我们就很清楚为什么阿基米德要引入那条神秘的线 A′B 了

(在图 S-8 中)：它的长度 y 刻画了这个球内的这个立体的表面积。同

样也很清楚他为什么需要偶数边正多边形。这样每一个内半径 (在我

们的图中是 b, c, d)都属于两个立体图形。如果阿基米德使用的是奇数

边的正多边形,他可能就得不到两端的圆锥;其中一个半径不能是圆台

和相连接的圆锥的共同部分, 因此就不能使用等式 (∗)。
无论如何,我们已经确定了这个内接立体图形的表面积,而不是这

个球面本身的表面积。但是, 前者是后者的近似, 当正多边形的边数增

大时, 这个近似就会变得更好。取代内接正八边形, 我们可以做 10 边

形, 20 边形, 或者 20 000 000 边形。根据上面的推理, 这个内接立方体

的表面积是 π(2ry),与边数无关。同时,这个立方体的表面积将趋向这

个球面的表面积。因此, 我们可以利用第 D 章的“limit”, 得到：

球的表面积 = lim(内接立方体的表面积) = lim π(2ry)

当正多边形的边数无限增加时,上式中的球面半径 r的大小不变。

但是 y 是线段 A′B 的长度, 它的值会发生变化。显然, 当多边形的边

数增大时, 图 S-8 中的点 B 将沿着圆弧向 A 移动, 所以线段 A′B 接

近直径 AA′。换句话说

lim y = lim A′B = A′A = 2r

为此我们得到想要的结果：

球的表面积 = lim[π(2ry)] = 2πr[lim y] = 2πr(2r) = 4πr2

这个结果叙述起来很简单, 而证明起来很复杂。 ¥
在阿基米德的论文《论球和圆柱》中, 阿基米德用不同的方式陈

述了这个定理。因为他工作的时间是在代数记法出现的近 2000 年前,

当时诸如 4πr2 这样的公式还没有意义。他是用一首小诗陈述了这个

定理：“任意球面的表面积是其中的最大圆的面积的 4 倍大。”[4] 当然,

这与我们上面的版本是一致的,因为球面中的“最大圆”就是通过球的
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直径的圆。这个圆形截面的半径是 r, 面积是 πr2, 所以当阿基米德说

这个面积是 4 倍大时, 就是说这个球面的表面积是 4πr2。无论是表示

成一个公式还是一句话, 这都不愧为一个奇妙的推理。

出于历史的准确性的缘故, 我们必须再加上几句说明。我们的推

理跟随着阿基米德所采用的路线, 但是也作了一些有意义的更改。首

先, 正如提到的那样, 他采用的是纯几何的模式, 而不是代数模式。其

次, 他没有使用极限。过了这一推理的关键点, 即确定了内接的近似立

体图形的表面积之后,我们简单地让正多边形的边数趋向于无穷大,取

了极限, 完成证明。

但是阿基米德没有极限的概念,也没有相应的代数记法,他使用了

一种被称为双归谬法的证明技巧,我们在第 G章对欧几里得工作的讨

论中看到过这一证明技巧。即他首先证明了球面的表面积不可能比这

个球面的最大圆面积的 4 倍还要大。然后, 他再回过头来证明球的表

面积也不可能小于它的最大圆面积的 4倍。在这两个方面被除掉之后,

他得出结论说球的表面积正好等于它的最大圆面积的 4 倍, 一点也不

大, 一点也不小。

我们绝不会因阿基米德使用了间接推理方法而指责他。用他那娴

熟的手法,双归谬法足以建立这一定理和其他更有意义的几何结果,而

且 1500 多年以后数学家仍然使用这一技巧。他的确熟练利用这些工

具做了一项非常了不起的工作。只有利用代数记法和极限, 数学家们

才能采用上面的捷径。

这就是《论球和圆柱》中那个伟大的定理。在这本书的不同地方,

阿基米德给出了这一结果的不同版本, 其中一个版本解释了这一标题

的意义。他写道：“以这个球里的最大圆为底, 而且高等于这个球的直

径的任何圆柱是⋯⋯这个球面面积再加上一半。”[5] 他所说的“球面面

积再加上一半”的意思就是

圆柱的表面积 =球面面积+
1
2
(球面面积)

这里,阿基米德把圆柱和嵌在这个圆柱里的球面联系到了一起 (参

见图 S-10)。但是这个陈述与前面的陈述等价吗？当然, 答案是肯定的,
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我们下面会看到其中的原因。

图 S-10

在本章的前面, 我们已经证明了圆柱

的表面积是 2πrh,因为这个球面是嵌在这

个圆柱里面的, 而圆柱的高恰好是这个球

的直径, 即 h = 2r。因此这个圆柱的表面

积是 2πr(2r) = 4πr2。

但是, 当阿基米德谈起圆柱面积的时

候, 他是要包含它的上底和下底的。这个

圆柱的上底的面积是 πr2 , 而下底面积也

与此相等。因此整个圆柱的表面积是

侧面面积+上底面积+下底面积 = 4πr2 + πr2 + πr2 = 6πr2

阿基米德陈述到, 这个圆柱的表面是“球面的面积再加上一半”。

设 S 表示球面的面积, 那么我们有

6πr2 =圆柱的表面积 = S +
1
2
S

对两边加倍,得到 12πr2 = 2S+S = 3S,因此, S = (1/3)×12πr2 = 4πr2,

同前面完全相同。

圆柱和球面之间的这一关系激发了阿基米德的激情, 他有理由为

这一发现而骄傲。据传说, 他要求把嵌在圆柱里面的球面的图形刻在

他的墓碑上, 作为这一伟大几何真理的纪念品。这就是他的纪念碑。

最后, 我们谈一些对过去的观察。身处现代科学和技术进步之中,

很容易觉得我们的智力优越于以往任何时代的人。毕竟, 亚里士多德

没有得到博士学位, 欧几里得也没有得到诺贝尔奖。我们坐下, 打开电

视, 深深同情智力有限的祖先。

本章应该扼杀了任何这样的情感。显然, 我们刚刚看到的数学驱

散了这样的观念：全世界聪明之人都活在今天。在 20多个世纪之前的

阿基米德的敏锐注视之下, 球面面积的神秘面纱被永远地揭开了。
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那些勇敢进行不可能的探索的英雄们身上有着永不磨灭的迷人魅

力。从圣杯到基德船长的掩埋的宝藏, 从西北航道到青春之泉, 探险家

们满怀无限希望地出发了。有很多人消沉失望地回来了。有些人再也

没有回来。更少的人克服了重重困难, 取得了成功：詹森发现了金羊

毛, 居里分离出了镭, 埃德蒙�希拉里和丹增诺盖登上了珠穆朗玛峰。

这如同神话一般, 因为这样充满坚定不移的意志和勇气的故事对我们

有强大的吸引力。

数学肯定也有属于它自己的追求,其中有成功也有失败,当然这一

领域是纯推理领域, 而不是喜玛拉雅山脉。其中最著名的就是有千年

之久的三等分角的探索。

像其他很多数学故事一样, 这个故事来自于希腊几何学家。这一

挑战是这样简单地提出来的：从任意角开始, 把它精确地分成三等分。

这一任务似乎相当直白, 但是首先我们应该阐明其规则。

首先, 我们被限制只能使用几何工具：第 G 章讨论过的圆规和没

有刻度的直尺。利用其他工具的三等分即使再精妙也不算解决这一问

题。的确, 希腊几何学家通过引入诸如希庇亚斯的割圆曲线或者阿基

米德的螺旋曲线等辅助曲线解决了这一问题, 但是这些曲线本身是不
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能用圆规和直尺构造出来的, 所以这样做违反了游戏规则。这就如同

利用直升飞机达到珠穆朗玛峰一样：使用了不允许的手段实现目标。

为了合法地实现三等分, 我们只能利用圆规和直尺。

第二个规则是, 这一构造必须在有限步骤内完成。构造必须能够

结束。一个“无限构造”即使能够在一定限制下实现三等分也是毫无

价值的。永远进行下去的构造对于州际高速公路也许是正常的, 但是

在几何里这是不允许的。

最后, 我们必须设计一个三等分任意角的过程。三等分一个特殊

角, 甚至一千个特殊角也是不充分的。如果你的解决方案不具有普遍

性, 那么它就不是解。
这最后一点在图 T-1 中得到了说明。假

设使用圆规和直尺, 我们可以作 AB 垂直于

BC(一个简单的过程)。以 AB 为底, 下一步

是构造一个等边三角形 ABD。正如我们在

第 G章中所讨论的那样,这是《几何原本》的

第一个命题, 所以它是合法的。现在, ∠ABD

是 60◦,∠ABC 是 90◦, 所以 ∠DBC 是 30◦ =

(1/3)(∠ABC)。利用圆规和直尺我们已经完

美地把直角三等分。

A

B C

D

60°

30°

图 T-1

这值得庆祝吗？当然不,因为三等分直角不是我们的目标。我们的

目标是一般角, 上面的过程不具有一般性。

有一个现象可能激发了三等分角的探索,就是,能够用圆规和直尺

完成两个显然相关的构造。一个是任意角的二等分, 另一个是任意线

段的三等分。我们离开一下, 去看一看这些是如何实现的。

首先, 假设我们有如图 T-2 所示的任意角 ∠ABC, 而且希望用圆

规和直尺把它二等分。我们使用的这一过程是《几何原本》第 I 卷

的命题 9。首先在线段 AB 上选择任意一点 D。利用圆规以点 B 为

中心、BD 为半径, 画一条弧交 BC 于点 E 使得 BD = BE。使用

直尺画 DE, 在 DE 上构建等边三角形 DEF。最后, 画出线段 BF。
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图 T-2

三角形全等理论证明 BF 二等分

∠ABC, 因为根据构造, BD = BE;

因为 4DEF 是全等的, 所以 DF =

EF ;BF = BF。根据 SSS, 我们得

出结论：4BDF 全等于 4BEF , 所

以 ∠ABF 与 ∠CBF 相等。换句话说,

∠ABC 被一分为二。

我们注意到,我们用圆规和直尺在

有限步骤内把任意角分成了二等份,因

此符合我们的规则。角的二等分显然相当初等。

也很容易把一个角四等分, 即把它分成四个相等的部分。我们注

意到, 只需重复前面的过程, 分别把 ∠CBF 和 ∠ABF 二等分就能够

得到完美的四等分。再把它们每一个二等分就产生八等分, 依次类推。

显然, 不难把任意角 2n 等分。当然, 这一切对我们如何把一个角三等

分是没有什么帮助的。

另一个相关的构造是利用圆规和直尺三等分任意一条线段。我们

再看一下欧几里得的做法, 他在《几何原本》第 VI 卷的命题 9 描述了

下面的过程。

从任给的线段 AB 开始, 我们希

望把它三等分 (参见图 T-3)。从点 A

出发画任意一条直线 AC, 取 AC 上

任意一点 D。利用圆规在直线 AC 上

构造线段 DE 和 EF , 它们与 AD 有

相等的长度, 这样就使得 AD 的长度

是 AF 的长度的三分之一。

接下来画 BF , 形成 ∠AFB, 它

的大小记作 α。利用圆规直尺, 构造

A B

D

G

E

F

C

α

α

图 T-3

∠ADG, 其大小也等于 α(欧几里得在卷 I 的命题 23 中描述了这一构

造)。这表明 4ADG 和 4AFB 是相似的, 因为它们都有大小为 α 的
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角而且共有顶点 A处的角。根据相似性,对应边的比相等。特别地,我

们有

AG

AB
=

AD

AF
=

1
3

所以线段 AG 也是 AB 的三分之一。这样, 我们利用圆规和直尺在有

限步骤内把一条一般线段三等分了。

我们能够二等分角和三等分线段, 似乎有理由期望我们可以三等

分角。古希腊人也许就是这样想的, 而且几个世纪以来无数的数学家

可能也是这样想的。

还有一件事也给三等分研究者以希望：圆规和直尺能够完成一些

奇妙的构造。没有人会因为知道可以构造等边三角形或者正方形而感

到惊讶,但是利用圆规和直尺构造正五边形却不是那样一目了然,欧几

里得在《几何原本》第四卷描述了一个构造过程。另外, 我们可以构造

正六边形、正八边形、正十边形和正十二边形, 甚至是正十五边形, 这

最后的正十五边形的构造法是《几何原本》第 IV卷的最后一个命题。

如果圆规和直尺有如此大的威力, 我们也许可以乐观地进行诸如

正九边形的构造。自然的下手处应该是构造等边三角形 ABC, 并把

其中一条边延长到 D, 如图 T-4 所示。那么 ∠DAC 的大小是 180◦ −
60◦ = 120◦。现在, 如果我们能够把 ∠DAC 三等分, 我们就构造出一

个 (1/3)(120◦) = 40◦ 角, 这就是 360◦ 圆的九分之一。把这个 40◦ 转

移到圆的圆心, 重复九次就可以产生一个正九边形, 如图 T-5 所示。

AD

C

B
40° 60°

图 T-4 图 T-5
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当然这一构造中包含着“如果”的条件。毫无疑问, 构造正九边形

的愿望是圆规和直尺三等分角的另一个潜在的推动力。

此时, 我们应该看一下两个“近乎成功”的案例; 即能够把任意角

三等分, 只不过要破坏前面提到的某条构造规则。

A B

C

D

α β

γ

图 T-6

第一个是阿基米德的一个聪明的

推理。这个过程使用一个著名的结果,

即三角形的外角等于两个内对角之和。

为了证明这一结果, 只需简单地把边

AB 延长到 D, 生成图 T-6 所示的外

角 DBC。我们知道 α + β + γ = 180◦,

因为它们是三角形的三内角。同样,因

为 AD 是一条直线, 故 ∠DBC + β =

180◦。因此 α + β + γ = ∠DBC + β,

在这个等式的两边减去 β, 得到 α + γ = ∠DBC, 结果证明完毕。

现在,我们开始看一下阿基米德把一般角 AOC 三等分的方法,如

图 T-7 所示。以 O 为圆心、以任意的半径 r 构造一个半圆, 延长线段

CO 交半圆于 B 点。

图 T-7

在左侧方向上以这个正确的距离延长这条线是这个过程的关键。

我们这样做：取一把直尺, 把它的一端放在点 A, 另一端放在这条延长

线上的一点 D,使得沿着直尺从 D 到 E(E 是半圆与直线 AD 的交点)

的距离等于这个半圆的半径。换句话说, 构造 AD 使 ED = r。我们说

这样形成的 ∠ADC 是原来角 ∠AOC 的三分之一。

为了证明这一结论, 设 ∠ADC 的大小是 α。画半圆的半径 EO,
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创建 4DEO, 这时有 ED = EO = r。4DEO 是等腰三角形, 所以

∠EOD = α。接下来, 观察 4DEO 的外角 ∠AEO 的大小是对面的两

个内角之和。即角 ∠AEO=α + α=2α。但是, 4EOA 也是等腰三角形,

因为它的两条边是半径, 所以 ∠EAO = ∠AEO = 2α。

现在我们得出关键的结论：4AOD 的外角 ∠AOC 等于对面的两

个内角之和。因此,

∠AOC = ∠ODA + ∠DAO = α + 2α = 3α

这表明原来的 ∠AOC 正好是 ∠ADC 的三倍, 也就是说相当于我们构

造出 ∠ADC 等于给定角 ∠AOC 的三分之一。因此,我们在 ∠AOC 内

作一个同样大小的角, 这样, 使用圆规和直尺完成了三等分。

这是真的吗？遗憾的是, 在整个推理过程中使用了一个不合法的

过程。这是在寻找 D 点的过程中发生的。事实上, 我们是如何使用无

刻度直尺来确定 D 点 (进而 E 点) 的呢？我们又是如何从 A 点校正

直尺以保证线段 ED 的长度是 r 呢？你可以想象在直尺上作标志, 然

后来回转动它得到理想位置, 但是这是不允许的操作。直尺一定是没

有刻度的; 不能仅凭转动和滑动它来目测某个长度。虽然这一构造确

实三等分了这个角, 但是它显然违反了游戏规则。

应该公平地评价阿基米德, 他认识到了这一不合理之处。希腊人

甚至有术语“逼近”来描述直尺的这种转动和滑动。所以, 我们不应该

指责阿基米德犯了一个大错, 而是应该赞扬他给出了一个非常聪明的

推理思路。

我们的第二个近乎成功的案例

也采用了不合法的方式来进行三

等分。这一次还是从 ∠AOC 开始,

其大小为 β, 如图 T-8 所示。通过

两次二等分, 我们得到一个大小为

(1/4)β 的 ∠DOC。如果我们再进行

两次二等分 ∠DOC, 我们得到一个

A

O C

D

H
E
F

1
16
α

1
4α

图 T-8

大小为 (1/4)(1/4)β=(1/16)β 的角。我们拷贝这个角, 构成角 ∠EOD。
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对这个角做两次二等分, 得到一个大小为 (1/4)(1/16)β=(1/64)β 的角,

把这个角放置成 ∠FOE。

以这样的方式无限制地继续下去,我们构造出如下大小的 ∠COH：

1
4
β +

1
16

β +
1
64

β +
1

256
β + · · ·

这是一个无穷几何级数的例子, 下面我们给出一个评估它的 (尽管是

朴素的) 快速方法。

设 S 是上面表达式的和。即

S =
1
4
β +

1
16

β +
1
64

β +
1

256
β + · · ·

我们从 S 中减去 (1/4)S, 得到

S − 1
4
S

=
(

1
4
β+

1
16

β+
1
64

β+
1

256
β+· · ·

)
− 1

4

(
1
4
β+

1
16

β+
1
64

β+
1

256
β+· · ·

)

=
(

1
4
β+

1
16

β+
1
64

β+
1

256
β+· · ·

)
−

(
1
16

β+
1
64

β+
1

256
β+

1
1024

β · · ·
)

=
1
4
β+

1
16

β+
1
64

β+
1

256
β+· · · − 1

16
β − 1

64
β − 1

256
β − 1

1024
β · · ·

=
1
4
β

因为右边除了一项之外, 所有项都消掉了, 所以我们得到

S − 1
4
S =

1
4
β

所以有
3
4
S =

1
4
β → S =

4
3
× 1

4
β =

1
3
β

使用文字描述, ∠COH(即 S) 的大小是原来角 AOC 的大小 (即 β) 的

三分之一。三等分完成。

上面推里中的缺陷是显然的：我们需要一个无限的构造。的确,我

们作越多的两次二等分,我们就越能得到一个更加完美的三等分。使用
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这一过程足以使我们构造出精确度达到若干分之一度以内的三等分。

但是, 三等分的挑战需要精确, 而不是近似。对于这个过程, 生成精确

的三等分需要无限次构造,这不仅超出了事先规定的规则,而且还超出

了我们有限的生命周期。它是一个我们永远都无法完成的过程。

尽管有这样充满希望的尝试, 但是三等分问题仍然是古典时代没

有解决的问题。到了公元 4 世纪, 帕普斯 (我们曾在第 I 章遇到他, 他

赞扬了蜜蜂的智慧) 报告说：“古代几何学家希望把给定的直线角分成

三个相等的部分, 但是他们失败了。”[1]

这种迷茫经过文艺复兴一直延续到今天。一个又一个世纪, 一次

又一次失败, 三等分问题的地位逐渐升高。就像一个被重金悬赏缉拿

的逃犯一样, 三等分受到许许多多的数学家的热烈追逐。学者和伪学

者纷纷设计三等分过程, 并大肆向全世界宣布。然后, 无一例外, 这些

不幸的学者都眼睁睁地看着他人发现了他们推理过程中的缺陷。大量

不正确的证明如同潮水般涌来,迫使巴黎科学院于 1775年宣布不再接

受三等分的证明。[2] 携带着三等分证明的人们就如携带了瘟疫一样被

拒之门外。

这一策略反映出数学界的某些人已经开始相信任意角的三等分也

许是圆规和直尺力所不及的问题。不乏像勒内�笛卡儿这样的权威早

在一个多世纪前已经暗示并开始怀疑，没有正确的证明不能说明数学

家们不够聪明, 而是这个解决方案根本不存在。[3] 然而, 到了 1775 年

这仍然是一个猜测;人们更多地是投入精力把一个角三等分,而没有人

对它的不可能性给出证明。

在法国科学院颁布它们的禁令的二十年后, 一个事件又重新点燃

了三等分可行的希望。1796 年, 18 岁的高斯证明利用圆规和直尺可以

构造正 17边形。这是一个惊人的事件。高斯之前的所有人都没有想到

这一构造是可能的,如果说几个世纪以来对正 17边形的兴趣没有三等

分大, 这是因为它看似更加不可能。高斯惊人的发现表明圆规和直尺

隐藏着威力。如果正 17边形都可以构造,也许某个拥有高斯那样智慧

的人会攻克三等分这一谜题。
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几十年过去了, 这个问题仍旧没有解决, 直到最终由皮埃尔�劳

伦�旺策尔 (1814―1848) 给出最终答案。旺策尔是数学家、工程师和

语言学家,他就学于法国巴黎综合理工学院,这是当时重要的科学培训

基地。当一个人有如此之多的兴趣的时候就会发生这样的事情, 他的

注意力分散到各个学科, 因而没有留下持久威名的巨作。甚至在数学

家当中, 也有很多人不知道皮埃尔�旺策尔。

他名不见经传还要归因于他太短命, 这又要归因于他无节制的生

活习惯。一位同事回忆旺策尔时说了下面一段话：

他通常夜间工作, 一直工作到很晚才躺下; 然后他看书, 几个小时

都不能入睡,于是他滥用咖啡和鸦片, 结婚前吃饭没有规律。他对自己

的身体绝对自信, 身体素质非常好, 肆意妄为的享乐给它带来了伤害。

他给那些哀悼他去世的人们带来悲伤。[4]

旺策尔 1837 年关于三等分角的论文的题目是“关于一个是否能

够用圆规和直尺解决的几何问题的已知方法的研究。”[5] 对于如此重

要和年代久远的问题,这一成果却仅仅用了七页纸,但是却是非常重要

的七页。他的证明细节超出了本书的范围,我们在此只提供一个梗概。

旺策尔证明的关键是把这个纯几何领域的问题转化成一个代数和

算术领域的问题。他希望确定哪些量可以用圆规和直尺解决, 哪些量

不能用圆规和直尺解决,为了做到这一切,他把这些量不考虑成几何线

段而是考虑成数值长度。

旺策尔分析说,如果我们能够三等分一般角,那么我们肯定能够三

等分 60◦ 角。然后, 他利用代数观点并引用少量三角学知识, 证明了如

果 60◦ 角可以三等分, 那么三次方程 x3 − 3x− 1 = 0 一定有一个可构

造解, 即这个解的长度可以用圆规和直尺构造出来。(实际上, 旺策尔

所使用的方程与此略微不同,但与此是完全等价的,在这里我们就不再

考虑了。)

旺策尔在证明下面结果时充分显示了他的聪明才智：如果上面这

个三次方程有构造解,那么它也一定有一个有理数解,即一定存在一个

有理数 (如在第 Q章定义的)满足这个方程。于是,这个问题就被转化
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成研究是否存在满足三次方程 x3 − 3x− 1 = 0 的有理数的问题。

为了方便推理, 假设存在一个分数 c/d 满足这个方程。我们可以

假设这个分数是最小项分数,即除了 1和 −1之外,它的分子 c和分母

d 没有公因子。因为假设 x = c/d 满足这个三次方程, 所以我们有

(c/d)3 − 3(c/d)− 1 = 0

两边乘以 d3, 则把这个等式转化成 c3 − 3cd2 − d3 = 0。

现在我们用两种方法重写这个等式。首先,观察 c3−3cd2 = d3,它

等价于 c(c2− 3d2) = d3。显然,整数 c是左边的 c(c2− 3d2)的因子,因

此, c 也是右边的等价物 d3 的因子。但是, 因为我们假设 c 和 d 没有

公因子。因此, 如果 c 能够整除 d, 只能是 c = 1 或者 −1。

返回到等式 c3 − 3cd2 − d3 = 0, 用不同的方式排列它, 我们看到

3cd2 + d3 = c3。或等价地写成 d(3cd + d2) = c3。同样, 显然 d 是左边

的一个因子,所以 d也一定是右边的 c3 的一个因子。因为 d和 c是没

有公因子的, 这表明 d 是 1 或者 −1。

概括起来：如果 c/d 是方程 x3 − 3x− 1 = 0 的最小项有理解, 那

么 c = ±1 或者 d = ±1。但这样一来, 分数 c/d 只能是 1 或者是 −1。

因此, 我们把研究局限于这两个有理数选项, 可以一个一个地检

查。如果 x = c/d = 1, 我们得到 x3 − 3x− 1 = 1− 3− 1 = −3 6= 0, 所

以 c/d = 1 不是这个三次方程的解。类似地, 如果 x = c/d = −1, 我们

代入发现 x3 − 3x− 1 = (−1)3 − 3(−1)− 1 = −1 + 3− 1 = 1 6= 0, 所以

c/d = −1 同样也不是这个方程的解。我们知道, 这些是唯一可能的有

理数解, 但二者都不是解, 因此我们得出结论, 这个三次方程没有有理

数解。

我们到了什么地方？我们只需把这些结论综合起来说明三等分的

不可能性即可。推理的过程如下：

(1) 如果我们能够用圆规和直尺三等分一般角;

(2) 那么我们就能够三等分 60◦ 角;

(3) 所以我们就能够寻找到方程 x3 − 3x− 1 = 0 的一个可构造解;

(4) 所以我们就能够寻找到方程 x3 − 3x− 1 = 0 的一个有理数解;
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(5) 而这个有理解只能是 c/d = 1 或者 c/d = −1。

但是, 正如我们检验过的一样, 陈述 (5) 为假, 因为无论是 1 还是

−1都不是方程 x3− 3x− 1 = 0的解。我们得到了一个矛盾。因为陈述

(1) 一定能导出陈述 (5), 我们得出陈述 (1) 不正确的结论。总之, 利用

我们的老朋友“反证法”,我们已经解决了这个困扰了多少代数学家的

问题：用圆规和直尺三等分一般角是不可能的。

旺策尔的证明肯定不是一个简单的推理; 没有人期望一个已经争

论了 20多个世纪的问题能够很简单。但是它终结了。他为自己第一个

证明了此问题而骄傲地说：“对于通过几何构造三等分一般角不可行这

个历代著名的问题似乎不存在严格的证明。”[6] 所以, 到了 1837 年这

个问题得到了解决。

对严肃的数学家来说, 结论就是这样的。但是, 奇怪的是, 许多看

似严肃的人、误入歧途的人以及愚蠢的人还在坚持寻找三等分的方法。

甚至到了今天, 三等分研究者仍然在忙碌着。他们每个人都称声已经

发现了奇妙的方法,利用这个方法可以三等分角,从而在某部数学史籍

中赢得一席之地。

他们都错了。旺策尔的证明是最终结论,三等分是无法实现的。用

安德伍德�达德利的话说, 你还不如去尝试着“寻找两个偶数, 其和等

于奇数。”[7] 然而, 忠实的三等分研究者们不会轻易相信。正如罗伯

特�亚特斯评论的那样：“这种奇异疾病的病菌一旦侵入大脑, 如果不

能正确地立即使用抗菌剂, 那么受害者就开始进入从一个逻辑暴行到

另一个逻辑暴行的邪恶之圈套。”[8]

这样的行为有一个解释, 就是没有理解不可能这个词汇。对于某

些人来说,不可能听起来与其说是一种结论,不如说是一种挑战。毕竟,

人类曾一度认为诸如飞行、架桥于金门海峡、登月之类的事情都是不

可能的。但是,这些不可能的挑战都成功了。我们当中有谁没听到过这

样铿锵有力的口号:“在美国, 没有什么不可能！”不要忘记这样场合下

的讲演者通常都是政治家或者自助书的作家。

数学家了解得更深刻。正如我在第 J 章中所说的那样, 数学家们

图灵社区会员 cindy282694 专享 尊重版权



T 三等分 267

能够切切实实地证明否定的结果。在这种情况下, 不可能就真正意味

着不可能。

所以,我们应该劝告那些继续寻找三等分这一圣杯的人们,在 1837

年 P. L. 旺策尔已经证明了如果能够三等分角, 那么就能够为没有有

理数解的方程找到有理数解。后者的逻辑不可能表明前者也是逻辑不

可能的。

用圆规和直尺三等分一般角确实是不可能的。案子终结。
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mathematiques pures et appliquees, Vol.2, 1837, pp. 366–372.

[6] Ibid., p. 369.

[7] Underwood Dudley,“What to Do When the Trisector Comes,”The Math-

ematical Intelligencer, Vol. 5, No. 1, 1983, p. 21.

[8] Robert C. Yates,The Trisection Problem, National Council of Teachers of

Mathematics, Washington, DC, 1971, p. 57.

图灵社区会员 cindy282694 专享 尊重版权



数学有用。

从经验老道的数学研究人员到数学恐惧症患者都知道数学在现实

世界中有广泛的应用, 但他们却很难对此给出更老套的陈述。年复一

年,这些意识通常充满着大量的数学课程,并把大量的教科书卖给以数

学为不可或缺的工具的人们。工程学、建筑学、物理学、经济学、天文

学以及其他数不清的专业的学生们被告知, 他们必须获得数学知识才

能在他们预期的职业生涯中成功。就实用性而言, 很少有人类活动能

与其相提并论。

这样老套的评论折射出一个非常敏感的哲学问题：为什么数学如

此好地承担着实用的角色呢？毕竟, 纯数学是一个抽象的思想网络, 是

一个内在统一和逻辑完美的思想体系,但是, 这仍然只是思想。逻辑一

致性本身不能够保证它有用。例如, 克里比奇牌游戏的规则是逻辑一

致的, 但是它对月亮轨道不能给出见解。

我们再说第 G章描述的欧几里得几何。毫无疑问它是由公设出发

进行完美推理的极好例子,但是,这并不意味着欧几里得几何的命题描

述了穿越街区的空地的几何。但是, 有一张纸和一些欧几里得几何知

识,我们就可以坐在家里计算空地的长度和面积,户外的实际测量将验
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证这些计算正确。没有必要真的走出去; 数学的抽象产生如此精确的

结果, 超出了空地本身的实际需要。

然而, 欧几里得几何描述的不是空地,也不是物理对象。它描述的

是思想。这到底是怎么回事？为什么通常数学家们认为开尔文伯爵把

它描述成“常识的精微化”[1] 是正确的呢？

如人们常说的那样, 自然服从数学法则吗？如果服从则表明, 在某

种程度上, 外部世界受到数学原理的制约。还是说自然和数学展示出

一种平行, 而实质上行为毫不相干呢？数学因其整洁的特性是描述世

界内在秩序的最完美的语言, 这只是偶然的吗？也许正好是数学无形

的节奏和结构与现实的无形节奏和结构相吻合, 虽然它们之间互不约

束。

在这些哲学论点之外, 还应该注意一个平凡的事实：很多自然现

象与数学解决方案相抵触。有时候数学家们无法胜任这样的任务。这

就是腓特烈大帝的观点, 1778年他写信给伏尔泰说：“英国人以牛顿给

出的最好船为样本制造了船只,但他们的舰队司令明确地对我说,这些

船只几乎不可能像凭经验制造的船只那样正常行驶⋯⋯全都无用, 几

何无用！”[2]

我们得承认没有哪个数学模型能够完美地预测天气。一个“完美”

的天气预测方程也许要考虑在如风速、气压和日照量等相互影响的变

数之下的暴雪, 而这种复杂度超出了数学所能够控制的范围。这并不

是说我们应该放弃。天气预测不断地得到改善, 描述它的数学模型越

来越精妙。但是, 没有哪个模型能够精确地预测, 例如, 二月期间落在

迪比克市政厅屋顶上的雨滴的精确数量是无法预测的。这样的精确超

出了我们的能力范围。当然, 二月份落在那个屋顶上的雨滴有确切的

数值,而数学家们的能力不足, 不能阻止下雨。用奥古斯丁�弗雷内尔

尖锐的话说：“分析的困难不能阻碍自然。”[3]

在下面的内容中, 我们尝试着避开阻碍。我们的目标是从不计其

数的数学应用中选出两个应用, 它们既简单又能揭示出我们所生活的

世界的某些有意义的东西。第一个是应用数学来测量空间, 第二个是
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应用数学来测量时间。

考虑这样的情形：我们站在河岸, 正对着河对面的一棵高大的冬

青树。遗憾的是, 我们不会游泳, 而且还有恐高症。在这样一些限制之

下, 我们如何求得这棵树的高度呢？

答案就在三角学 (trigonometry) 中, 这是一个古老且非常有用的

数学分支。它的名字揭示出了它的内容：tri(三)gon(边)metry(测量),即

三边 (三角形) 的测量。更精确地说, 三角学利用直角三角形的相似性

质。

考虑图 U-1 中的直角三角形。每个三角形都是包含一个 40◦角的

直角三角形, 所以每个三角形的另一个角都是 180◦ − 90◦ − 40◦ = 50◦。

因为这些三角形有相等的角,所以它们是相似的,因此它们的对应边成

比例。例如,在左边的三角形与右边的三角形中, 40◦ 角的对边与 40◦角

的邻边的比是相同的。用符号表示就是：

a

b
=

c

d

所以, 如果我们知道 a = 83.91, b = 100, c = 55, 那么我们代入这些数

值并交叉相乘就可以求得未知边：

83.91
100

=
55
d
→ 83.91d = 5500 → d =

5500
83.91

= 65.55

利用比例性质和三个边的知识, 就可以确定出第四条边。

图 U-1

上面的计算表明需要一对直角三角形, 但是没有理由要求它们必

须同时都是这个问题的一部分。即如果只给定图 U-2 的直角三角形,

图灵社区会员 cindy282694 专享 尊重版权



U 实用性 271

那么我们能够求得 d 吗？

答案当然是“能够”,因为我们能够很容易地想象另一个有一个角

是 40◦ 的直角三角形, 从而可以用纯数学的方式确定未知比例。采用

这样的观点, 三角学家定义了直角三角形的一个角 α 的正切为这个角

的对边与邻边的比, 记为 tan α。在图 U-3 中,

tan α =
对边

邻边
=

a

b

图 U-2 图 U-3

不用借助于实际三角形的测量就可以计算出这个值。希腊数学家

丢番图和托勒密在 2000年前就这样做了,后来通过印度和阿拉伯数学

家的工作生成了三角函数表,给出任意角 α的 tan α值。这些发现已经

进入现代的计算器, 轻轻敲几下键盘就可以得出 tan 40◦=0.8390996。

回到图 U-2 的三角形, 我们利用三角学推理得：

tan 40◦ =
对边

邻边
→ 0.839 099 6 =

55
d

因此 0.839 099 6d=55, 于是 d=55/0.839 099 6=65.546, 这就是上面得

到的答案。

这里, 重要的是, 数学家能够计算出理想的直角三角形的正切值,

并在解决实际问题时把这个理想的三角形作为一对相似三角形中的一

个。这正是我们求河对岸这棵树的高度要做的。

第一个目标是确定这条河的宽。沿着河岸走一段距离, 比如说是

100英尺,然后再测得从我们到达的新位置到这个棵树的角度。假设这
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A

b

B C100
58°

图 U-4

个角是 58◦。图 U-4给出了这个

构造图。在直角三角形 4ABC

中,这条河的宽度是未知长度 b,

边BC的长度是100(沿河岸仔细

测量的距离), 而且已知 ∠ABC

的大小是 58◦。因此

tan 58◦ =
对边

邻边
=

b

100
交叉相乘给出 b=100×tan 58◦=

100× 1.600=160.0 英尺, 其中 tan 58◦ 的数值可以由计算器来完成。这

就是这条河的宽度。

但是, 我们还没有完成任务,因为树的高度还不知道。我们可以简

单地走回到冬青树的正对岸, 并测量到树顶的角度。假设这个角度是

30◦。我们还是生成一个直角三角形, 这是如图 U-5 所示的垂直于地面

的直角三角形。这个三角形的底是河宽,即前面给出的 160英尺; 这棵

树的高度是未知数 x; 角度是 30◦。再次引用正切比率, 我们求得

tan 30◦ =
对边

邻边
=

x

160
所以有

x = 160× tan 30◦ = 160× 0.577 35 = 92.4(英尺)

我们不用离开地面或者弄湿我们的脚就可以求得这棵树的高度。尽管

这是相当简单的应用, 它却展示了无可否认的力量。

x

AC
30°

b = 160

图 U-5
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当然, 持有不同意见的人可能认为没有必要像前面那样做。毕竟,

我们可以找一条船, 划过这条河, 砍倒这棵树, 然后测量它的高度。不

是只有通过三角学的知识才能求解, 通过其他方法就不可能求解了。

为了削弱这种不在乎的观点, 我们给出三角学应用的一个更生动

的例子。这要求我们回到 1852 年, 回到印度测绘局长办公室, 在这里

大家正使用野心勃勃的英国测量队的喜玛拉雅山脉三角测量数据计算

那些遥远山峰的高度。

获取这些信息非常复杂。首先,存在很多比例问题。与河对岸的树

不同, 喜马拉雅山脉与测绘员相隔一百英里之远。在那样的一个距离,

你必须考虑大气的失真和地球的曲率。政治纷争使得测绘队无法进入

以喜马拉雅山群峰为边界的尼伯尔和中国西藏。就是因为它们如此巨

大,从印度山脚下根本无法看到这些山顶;从地平线上看不到更小的山

脉。

尽管有如此多的困难, 但是工作要继续。在查阅了大量的山峰资

料之后, 在测绘局长办公室里职员们对这些数据进行了分析。就在那

里, 根据登山运动的知识, 孟加拉主机 (这是一个人, 而不是一台机器)

在兴奋地对外宣布他在发现地球上最高的山峰之前一遍又一遍核实了

他的计算。[4]

这次测量只把它标注为山峰 XV。事实上,它看上去不是地平线上

的最高峰, 而这是因为它的距离要远得多 (它的距离就如上面例子中

的河宽, 是可以根据三角数据计算的)。山峰 XV 的高度大约为 29 000

英尺, 或者海拔 5.5 英里。它的顶峰高耸入云。通过比较, 欧洲第一高

峰勃朗峰的高度要比它低大约 2.5 英里。

英国人把这座山峰以它们自己的一个名字命名：乔治�埃佛勒斯

峰。这是殖民地国家的一贯做法,乔治是这一三角测绘的前领导人。当

然, 这座巨峰的存在对居住在其山脚下的人们来说不是秘密。居住在

北边的西藏人很久以来一直称它为珠穆朗玛峰,意思是“世界圣母峰”,

住在其南边的夏尔巴人把它称为天空之神, 意思是“宇宙之母亲”。然

而, 这一世界最高峰却以埃佛勒斯峰 (Mt. Everest) 的名字而闻名于
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世。如果说这个名字多少还有些英帝国主义的味道, 那么至少我们可

以说名字“Everest”给人一种威武雄壮昂首天外的感觉, 很适合这一

神奇的大自然。如果这次测量的指挥者名字是乔治�特威利格, 那么

这一效应也许会大大减弱。

当然, 上面的描述的重点, 是这座山的高度是在 1852 年利用三角

学得到的。这一时间是丹增�诺尔盖和埃德蒙�希拉里 1953 年 5 月

末人类第一次登上珠峰的大约一个世纪之前。爬这一山峰需要背包、

冰斧和非凡的勇气, 而确定它的高度只需要三角学。

如果这个寻常的例子揭示了数学的实用性, 那么我们再举一个更

不平凡的例子。人类采用与测量冬青树及珠穆朗玛峰相同的方法去测

量远的无法想象的距离, 如月亮、太阳和行星。

这个故事至少要回溯到希腊和伊斯兰学者, 他们对太阳距离和月

球距离的估测是基于对日蚀的裸眼观测和三角学知识的。例如, 大约

公元 850 年, 天文学家艾哈迈德�法尔甘尼计算了从地球到太阳的平

均距离大约是地球半径的 1170 倍。这是一个大致的估测, 因为它使得

我们与太阳之间的距离缩短了 500 万英里, 如果真是这样的话, 那么

这是一个我们的星球会被烧成灰烬的距离。然而这是一个开始。[5]

随着 17世纪望远镜的出现, 更精确的观测成为可能。在从地球延

伸到太阳的三角形计算中,这些观测是必须的,因为测量上的微小误差

将导致的不是几英尺的误差 (如冬青树的观察), 而是千百万英里的误

差。对精确度的这种要求已经逼近当时仪器的极限范围。尽管有这样

的挑战, 但是, 到了 17 世纪末, 乔万尼�卡西尼 (1625―1712) 计算了

地球与太阳的距离大约是地球半径的 22 000 倍。[6] 这个数据转化过

来就是大约 87 000 000 英里 (非常接近当前认可的 93 000 000 英里)。

这是解决了看似不太可能的地球外问题的一个非常了不起的例子。

如科学中常有的事情一样, 一个问题的解决常常使另一个问题的

解决成为可能。在上面的案例中, 知道了太阳的距离带来了对光速的

第一次估测, 这是整个物理学中最有意义的常量之一。下面讲述它是

如何实现的。

图灵社区会员 cindy282694 专享 尊重版权



U 实用性 275

早在 1610 年, 伽利略已经利用他的“小望远镜”发现了绕木星旋

转的四颗月亮。随后, 天文学家们记录了这些遥远卫星的运动,因而到

了 17 世纪 70 年代卡西尼已经制作出精确的表格, 给出最里侧的月亮

Io 可能消失在这颗大行星后面的次数。Io 的这些月蚀每隔 42 小时 27

分钟发生一次。

但是, 人们观察到了一个意外的现象。当地球和木星彼此分别位

于太阳的两侧 (如图 U-6 所示) 时, Io 躲在木星的后面, 消失得总比预

测的晚一些, 而当这两颗行星位于太阳同侧的一条直线上 (同样如图

U-6 所示) 时, 它消失得总比预测的早一些。在 Io 绕木星的运动中, 似

乎存在无法说明的无规律性。

图 U-6

注意到这种延迟的人是卡西尼的助手奥利�罗默 (1644―1710)。他

奇怪当这些行星相距最远时月蚀变得缓慢, 而当它们靠近时月蚀又逐

渐加快, 这说明了什么呢？当然, 有一个解释是 Io 以变速绕木星旋转,

当地球靠近时, 速度变快, 而当地球远离时, 速度变慢。遗憾的是, 这

违反物理定律, 而且, 不管怎样, 木星的月亮与地球的行踪有什么相干

呢？

罗默认可的一种比较简单的解释是 Io 以不变的速度运动, 但是

当它不得不移向更远的地方时,它的光要花更长的时间到达我们这里。

表面的延迟不是由于在木星邻近过程中发生了什么事情所引起的, 而

是由于光穿越我们的轨道到达地球花费了额外的时间所引起的。

当然,人们知道声音从一点传到另外一点是要花一些时间的,这与
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在遥远的闪电之后, 我们才听到那迟到的雷声时很容易观察到的现象

一样。但是, 人们普遍认为光是瞬间传播的, 因此在一个地方发生的事

情会立即被另外一个地方看到。像古典时期的亚里斯多德和 17 世纪

初期的笛卡儿这样的权威都是这样认为的。但是, 罗默对木星的月亮

的这种速度减慢和加快的解释与人们对雷声延迟的解释完全一样, 而

重要的差异是, 现在是光从一个地方到达另一个地方需要花费时间。

罗默自己对确定光的实际速度没有太大的兴趣, 他感兴趣的是证

明光的传播不是瞬间的。[7] 但是, 我们可以利用罗默的数据生成这个

速度的“17 世纪”估测。观察表明, 当地球从距离木星的最近点移动

到它的最远点时, Io 的月蚀延后了 22 分钟。罗默把这丢失的 22 分钟

归因于光穿越地球轨道直径所必需的时间,即从图 U-6中的点 A到点

B 所需要的时间。因此,光利用了这个时间的一半也就是 11分钟穿越

了从地球到太阳的这段距离。如果我们使用卡西尼对这段距离的估测

值 87 000 000 英里, 那么我们得出光每分钟传播大约 87 000 000/11=

7 910 000 英里, 或者 7 910 000/60=132 000 英里/秒的结论。

这是一个惊人的速度。克里斯蒂安�惠更斯惊叹到: “我带着非

常喜悦的心情了解到由罗默先生做出的美妙发现, 说明来自光源的光

在传播中需要时间, 甚至测量出了这个时间。这是一个非常重要的发

现。”[8] 这一时期的另一位天文学家也惊讶地评论道:“我们会因这个

距离的巨大和光运动之快速而感到恐怖。”[9]

事实证明, 这个速度还是低了。地球轨道半径被低估了足足

6 000 000 英里, 而光穿越它所需要的时间也被高估了很多分钟。事

实上, 光穿越这段距离花费的时间是 16.5 分钟多一点, 而不是罗默估

测的 22 分钟。现在, 光的速率取作每秒 186 282 英里。

所以,在测量跨越空间的巨大距离时数学的确显示出它的实用性。

但是, 本章的另一个例子也同样非常引人注目：利用数学去推测穿越

时空的巨大距度。

多少个世纪以来,当我们挖掘出石油层或者岩石层时,学者们追溯

过去,通过简单的观测来推测史前物品的相对年代。这是很容易的。但
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是, 一个被挖掘出来的鹿角, 一件埃及人的裹尸布, 一块来自于窑洞的

烧焦了的木头, 它们的绝对年代是什么呢？考古学家如何期望能够确

定这些物品从出现以来已经是十年、一百年或甚至是一千年了呢？而

这样的信息似乎不可知并永远丢失了。

但事实并非如此。科学最深刻的属性之一就是它的不懈的探索,即

使面对着绝望的境地。用托马斯�布朗爵士一段风趣的话说,“塞任女

妖唱的什么歌,阿喀琉斯用的是什么名字混在女人堆里,这些问题都令

人费解, 尽管如此, 它们却并非琢磨不透。”[10]

正是有了这种精神, 化学家威拉德�利比和他的助手在第二次世

界大战爆发后的几年间做出了放射性碳测年法的重大发现。因为这项

成果, 1960 年利比获得了诺贝尔化学奖, 也因为揭示了古代取火及史

前骨骼的秘密而得到了充分的认可。利比发现的, 是那些古老的骨头

或木头碎片的确是微小而精确的时钟。而破译其中隐藏着的信息需要

了解碳的化学性质和自然对数的数学性质。

首先看一下化学。碳存在着三种类型。其中的两种在地球上含量

丰富而且比较稳定,分别被称为碳 12和碳 13; 而第三种比较稀有且不

稳定, 是碳 14, 这是一种放射性同位素, 半衰期是 5568 年。半衰期是

一个术语,具有简单的含义：经过 5568年,原来碳 14的质量的一半将

由于放射性衰变而失去。因此,今天质量为 1磅的碳 14在不受干扰的

情况下从现在开始 5568 年之后将降低到半磅, 从那时开始再过 5568

年再降低到四分之一磅。

碳 14 来源于高层大气的宇宙辐射, 在那里碳 14 与氧反应生成放

射性二氧化碳。最终放射性二氧化碳沉积到地球表面成为所有生物赖

以生存的碳混合物的一部分。利比直截了当地指出：“因为植物的生存

依赖于二氧化碳,所以所有植物都是放射性的;因为地球上所有动物的

生存都依赖于植物,所以所有动物也是放射性的。”[11] 因此, 放射性碳

就存在于你用作午餐的胡萝卜之中,存在于你花园里的牵牛花里,存在

于你的宠物仓鼠的身体里, 存在于副总统的身上。它是我们地球上的

生物的共同标志。
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利用高深的化学, 可以确定活体组织中放射性碳和非放射性碳的

比例, 从而合理地假定过去的动物和植物体内也有类似的比例。因为

有机体从事着生命活动,因此它们不断地从食物链中补充丢失的碳 14,

以此来维持其比例达到相当持久的平衡。

但是,在庞大的动物死去或树木倒下之际,它补充碳的日子就结束

了。此时, 它体内组织中的碳将永远就是这些。随着年代的流逝, 非放

射性碳保持不变, 而碳 14 进行它的放射性衰变, 其意思就是说, 它逐

渐消失。放射性碳和非放射性碳之间的相对比例因此会随着时间的流

逝减小。就如一台失调的老钟一样, 放射性的释放成比例地减慢。碳

14 的这种衰变是从有机体的死亡开始的, 一直持续到这些老骨头或木

制物品被从地里挖出来的那一天为止。

使用特殊的仪器, 化学家能够确定物品中碳 14 的当前放射量, 生

命离开的越远, 放射性的量就越少。因为我们知道碳 14 衰变的速率,

我们就能够在一定的精度范围计算出这一物品已经花费了多长时间到

达目前这一减少了的放射水平。当然, 这就是这块骨头或木头不再是

生物体的一部分时开始的精确的时间长度;再简洁点说,这就是这个物

品的年龄。这就是我们在这里展示的科学侦探工作的杰作, 它的确应

该获得诺贝尔奖。

但是, 如科学中常有的事情一样, 整理最终的细节需要数学。对放

射性碳测年法来说, 重要的方程是

As =
Ao

e0.693t/5568

其中, As 是这件物品当前的放射水平, Ao 是同一物品活着时的放射水

平, 而 t 是自它死亡以来经过的时间。注意, 嵌在方程里的是碳 14 的

5568 年的半衰期。还要注意的是, 数 e 以主角的身份又出现在我们的

面前。

下面的例子与利比自己考虑的例子类似, 它具体说明其中所涉及

的数学。[12] 假设考古学家从古埃及法老的殡葬船上挖掘出来一块木

头。我们假设制成这块木头的树大约就是在法老死去的时候砍倒的。

化学家在实验室分析这块木头, 确定它当前的放射水平是每分钟每克
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碳分解 As=9.7。与之相比较, 新砍倒的同品种树产生每分钟每克碳

Ao=15.3 的放射分解。目标是计算 t, 即这块木头的年龄。

把 As 和 Ao 代入方程中得到：

9.7 =
15.3

e0.693t/5568

交叉相乘得到 9.7e0.693t/5568 = 15.3, 所以有 e0.693t/5568 = 15.3/9.7 =

1.577。

现在, 我们的目标是确定指数中未知的 t。首先, 我们在这个方程

两边取自然对数：

ln(e0.693t/5568) = ln 1.577

引用第 N 章的内容, 我们有 x = ln(ex)。因此, 我们得到
0.693t

5568
= 0.456

其中, ln 1.577 的值可以用计算器计算得到。因此有

0.693t = 5568× 0.456 = 2539.0 → t =
2539.0
0.693

= 3663.8(年)

于是我们的计算揭示出这条陪葬船的建造以及法老死去的时间是

3664 年前。当然这一估测的精度值得怀疑; 从放射水平的不精确确定,

到样本的受污染状况, 每一件事都会不同程度地影响我们的结果。然

而, 如果我们断定法老大约死于 3700 年前, 那么我们也许就站得住脚

了。拥有了木头日志与数学日志的知识, 我们已经让一件不能说话的

物品告诉我们它自己那古老的秘密。感谢化学和数学, 它们开启了通

向过去的大门。

无论是测量珠穆朗玛峰的高度,还是测量光速,还是测量法老的遗

物, 数学已经穿过层层疑云证实了它自己的用途。莫里斯�克莱因更

断言到: “数学的首要价值不在于这门学科本身提供了如此之多的东

西, 而在于它能够帮助人类实现对物质世界的认识。”[13]

很多人也许争论说, 在上面的一段话中, 克莱因有些言过其词。他

似乎是要说, 如果天文学家和化学家突然得到他们所需要的所有数学

知识, 那么数学家就会清理办公桌, 退休。
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纯数学家之首的哈代提出了相反的观点。一贯言语犀利的哈代承

认,“很多的初等数学⋯⋯都相当的实用”, 但是随后他又声称, 这些

实用的思想“大体上都相当的无趣; 它们恰恰是最没有美学价值的部

分。‘真正的’数学家的‘真正的’数学, 费马、欧拉、高斯、阿贝尔和

黎曼的数学几乎统统是‘不实用的。’”[14]

虽然大部分数学家不会因哈代坚定的不实用论的信仰而有丝毫的

退缩, 但是职业数学家有这样一种共识, 即数学不仅仅是科学的奴仆。

例如, 第 P 章的素数定理等结果尽管根本没有实际用途, 但是它仍是

那样的完美和迷人, 因此有数学的合法性。当我们仅以功利思想判断

数学时, 我们就忽视了人类的一个重要的特权：寻找享受内心自由翱

翔的机会。

尽管真理可能存在于克莱因和哈代之间, 但是数学的实用性是无

法回避的, 数学家们毫不动摇地致力于数学的应用。在数学家中, 有

人可能听到这样的至理名言：成为一名普普通通的应用数学家很容易;

成为一名普普通通的纯数学家则稍微苛刻些; 最困难的是成为一名杰

出的纯数学家。为了在数学应用中做出杰出的工作, 你必须掌握多门

学科：数学、天文学、化学以及工程学。纯数学家可以随意修改基本条

件或者假设来使得他们的工作更容易,相比之下,应用数学家却只能凑

合着用外部世界的无法控制的事实。纯数学家受逻辑驱动, 应用数学

家受逻辑和自然驱动。纯数学家可以改变基本原则, 而应用数学家却

被迫接受现实所给予他们的一切。

我们用一流科学家伽利略的话结束本章, 他听到了从自然界各个

角落反射回来的数学的回音。数学的实用性再没有比伽利略对宇宙的

如下描述更简洁的了：这是一本“圣典”,“在你学习掌握它的语言和

组成它的符号之前, 你是无法理解它的。它是由数学语言写成的。”[15]
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[5] René Taton and Curtis Wilson, eds.,The General History of Astronomy,

Vol. 2, Cambridge U. Press, New York, 1989, p. 107.

[6] Albert Van Helden, Measuring the Universe, U. of Chicago Press, Chicago,

1985, p. 129.

[7] Albert Van Helden,“Roemer’s Speed of Light,”Journal for the History

of Astronomy, Vol.14, 1983, pp. 137–141.

[8] Taton and Wilson, General History of Astronomy, p. 154.

[9] Ibid., p. 153.

[10] Bartlett, Familiar Quotations, p. 275.

[11] Willard F. Libby, Radiocarbon Dating, 2nd ed., U. of Chicago Press,

Chicago, 1955, p. 5.

[12] Ibid., p. 9.

[13] Morris Kline, Mathematics for Liberal Arts, Addison-Wesley, Reading,

MA, 1967, p. 546.

[14] Hardy, Mathematician’s Apology, p. 119.

[15] Stillman Drake, trans.,Discoveries and Opinions of Galileo, Doubleday,

Garden City, NY, 1957, pp. 237–238.

图灵社区会员 cindy282694 专享 尊重版权



19 世纪中期, 剑桥大学教员约翰�维恩 (1834―1923) 发明了可视

化逻辑关系的示意图。维恩是英国国教教堂的牧师, 是所谓的伦理学

权威和剑桥所有男校友大索引的汇编者。他对数学只有一般性的了解。

但是, 不管怎样他却为数学做了一个贡献。

这一贡献就是维恩图。它已经如同扉页或者目录一样成为今天教

科书的常设内容。维恩图就是一个简单的区域,在这个区域中, 圆形区

域表示具有公共属性的项目群体。

例如, 在所有动物的世界 (如图 V-1 所示的大矩形), 区域 C 代表

骆驼, 区域 B 代表鸟, 区域 A 代表信天翁。这张图快速地揭示：

B

A

C

图 V-1
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¤ 所有信天翁都是鸟 (区域 A 整个都在区域 B 之内)。
¤ 骆驼都不是鸟 (区域 C 和 B 不相交)。
¤ 骆驼都不是信天翁 (区域 C 与 A 不相交)。

这是逻辑基本规则的一个描述,即从陈述“所有 A都是 B”和“没

有 C 是 B”可以得知“没有 C 在 A 中”。当我们观察图中的圆时, 这

个结论是一目了然的。

没有人,甚至是约翰�维恩最好的朋友,会认为他潜在的思想很深

刻。维恩的创新不像第 S章中阿基米德关于球面的结论那样需要很高

的智慧。后者需要非凡的洞察力, 而前者也可能就是小孩子用有色笔

而做出的发现。

但是,不止如此。常被认为是符号逻辑的创始人的戈特弗里德�威

廉�莱布尼茨在 17 世纪几乎没有使用过这类图。在莱昂哈德�欧拉

的《全集》中, 我们发现了图 V-2 的图示说明。看起来熟悉吗？这就

是在维恩之前一个世纪的“维恩图”。如果公正的话, 我们应该把这个

图称为“欧拉图”。当然,这样的名字变更对欧拉的威名没有什么帮助,

而却抹煞了约翰�维恩的声誉。

图 V-2 “欧拉图”

(海里大学图书馆惠允)

所以, 维恩图既没有什么深远的意义也不是原创, 它只是非常著

名。在数学领域,某种程度上约翰�维恩已变得家喻户晓。在数学漫长

的历史中没有谁仅凭借这一点就获得了如此的声望。实在没有什么可

说的了。
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如果读者一直做记录, 很显然在本书中男性的出现多于女性。这

种不平衡反映了数学科学中男性的历史优势。但是, 这是否就意味着

女性对这门学科过去没有贡献, 现今没有贡献, 将来也不会有所贡献

呢？

上面各问题的答案分别是“不”,“当然不”,“请严肃点”。数学

史中女性的出现可以追溯到古典时代, 而今天女性比以往任何时候都

活跃。女性的生存要面对男数学家几乎无法想象的障碍, 其中不仅因

为她们缺少鼓励, 而且还有对女性加入的强烈阻碍。

首先, 我们承认, 在历史上最有影响的数学家的短短清单中, 阿

基米德、牛顿、欧拉、高斯等清一色都是男性。1900 年之前数学界

的女性人数非常少, 只有可数的几个人。其中经常提到的就是亚历山

大的希帕蒂娅, 她大约生活在公元 400 年。夏特莱侯爵夫人 (1706―

1749) 和玛丽亚�阿涅西 (1718―1799) 活跃在 18 世纪, 索菲�热尔曼

(1776―1831)、玛丽�萨默维尔 (1780―1872) 以及爱达�洛夫莱斯

(1815―1852) 工作在 19 世纪初。20 世纪初, 索菲亚�柯瓦列夫斯卡

娅 (在文学作品中也被称为索尼娅�柯瓦列夫斯基) 跻身于这一清单

之中。
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这些女性当中, 希帕蒂娅是一位颇有影响的几何学家、教师和作

家; 夏特莱侯爵夫人因为把牛顿翻译给法国人而知名, 萨默维尔因为

把拉普拉斯翻译给英国人而知名。1748 年, 阿涅西出版了数学教科书,

为此她得到了应有的认可。洛夫莱斯在查尔斯�巴贝奇制造他的第一

台“分析机”时与他一起工作。

热尔曼和柯瓦列夫斯卡娅是这个清单中最多才多艺的数学家。前

者对纯数学和应用数学都有研究。我们在第 F章提到过她对费马大定

理的研究, 1816 年因为她对弹力的数学分析工作而获得法国科学院的

大奖。而柯瓦列夫斯卡娅取得了博士学位, 并在大学担任职务,取得了

她那个时代女性的开创性成就。在这一过程中, 她赢得了各个方面曾

经对她怀疑的男性同事的尊重。

所以, 在 20世纪之前女数学家肯定是存在的。令我们惊讶的不是

人数很少, 而是还真的是有。因为女性不仅需要克服对数学充满渴望

的人要面对的通常意义下的种种障碍,即高级数学的确相当困难,而且

还必须克服各种各样的文化层面所带来的障碍。我们讨论一下挡住她

们道路的三个最严重的障碍。

第一是这一学科中对女性的普遍的负面看法, 这一看法在男性和

女性身上都已根深蒂固。其核心就是相信女性不具备做纯数学的能力。

这样的信仰已经深深印入很多人的大脑之中, 其中不乏非常有影响力

的人物。据说伊曼纽尔�康德就曾经发表评论说,女性“担心对几何动

她们美丽的脑袋时”会长出胡须, 这是出自一位如此重要的哲学家之

口的最令人气馁的评论。[1] 遗憾的是,这样的看法在过去绝不是个案。

在那个时代, 很多希望学习三角学或者微积分的高中女孩子都被指导

老师、家长或朋友劝说去从事家政学或者英语这些更适合女性思维方

式的学科。不管你相信与否, 这样的状况一直在持续。

证明女性不能从事数学研究的诸多证据之一是从事这一研究的女

性很少。换句话说, 数学中女性的缺乏被用来证明她们没有从事这门

学科的能力。当然这些说辞的理由是荒谬的。这就与把第二世界大战

之前美国职业棒球大联盟中缺少非洲裔美国人归结为他们没有玩这种
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游戏的素质是一样的。正如杰基�罗宾森、亨利�阿伦和其他很多人

已经充分证明的那样, 职业棒球大联盟缺少黑人球员不能证明他们缺

乏能力, 而只能说是缺少机会。

上面提到的具体人物充分说明女性也能研究数学。我们可以用近

来非常活跃的女性数学家来证明这一点,有格雷丝�奇泽姆�扬, 20世

纪初她在高等积分理论的改进中起到非常重要的作用, 有朱莉娅�罗

宾森,她是希尔伯特第十问题的解决者,还有埃米�诺特,她是 20世纪

最有成就的代数学家之一。女性不能研究数学的观点是没有根据的。

但是, 还有一个与此相随的观点就是女性就不应该研究数学。往

好处说, 那是在浪费时间; 往坏处说, 那是有害的。正如小孩子不应该

走近高速公路一样, 所以女性不应该走近数学。

我们以弗洛伦斯�南丁格尔为例, 后来她在医学艺术领域赢得了

声望。在她年轻的时候, 她表现出对数学的极大热情,因而对此感到奇

怪的母亲问到,“数学对结了婚的女人有什么用？”[2] 正如我们在第 U

章提到的那样, 人类事业中没有什么比数学更有用的了。但是南丁格

尔却被告知它是无用的。因为已经赋予了 19 世纪女性可接受的传统

角色, 无论如何数学都被看成是毫无用处的了。

于是, 女性还被告知研究数学将损坏她的社交魅力。更有甚者, 据

说有什么医学证据显示, 思虑过多的女性将会经历从生殖器官到大脑

的血液转移过程, 并伴随着非常可怕的后果。令我们好奇的是男性似

乎不用担心类似的血液流。

这一类观点迅速变成行动,或者更精确地说是, 无行动。热尔曼不

得不用一个男性化的笔名发表她的数学论文; 柯瓦列夫斯卡娅尽管怀

有不可质疑的能力, 但是最初学术位置还是拒绝她。甚至是伟大的埃

米�诺特, 她在德国哥廷根大学谋求低等职位时也遭到了冷遇。她的

诽谤者不赞同或者担心一旦女人走入这一大门, 将带来无法阻止的倒

退。为此, 戴维�希尔伯特用下面一段巧妙的讽刺对此做了回应：“我

不明白这位候选人的性别为什么成了反对她就职的证据。毕竟, 我们

这里是大学, 而不是洗浴场所。”[3] 最终诺特得到了工作, 而且这个数
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学团体 (哥廷根大学) 还活得相当得好。

第二个障碍是正规教育的拒绝。数学这门学科需要训练, 高强度

的训练。为了到达前沿, 你必须从基础开始进发, 对于数学这样既古老

又复杂的学科,这需要花费几年的努力。在过去, 很少有女性甚至开始

这样艰辛的路程。因此, 想在高级数学中取得成功几乎是不可能的。

男性又是如何学习这门学科的呢？他们通常接受家庭教师的辅导,

或者一对一的授课。我们已经看到莱布尼茨去请教克里斯蒂安�惠更

斯, 而欧拉与约翰�伯努利一起研究学习。这是培养把火炬传向未来

的大师的过程。几乎没有女性有这样的机会。

而男性经过适当的训练之后迈入大学, 在那里他们的才干和能力

将会得到进一步的培养。高斯就读于 Helmstadt 大学, 旺策尔就读于

法国巴黎综合理工学院, 罗素就读于剑桥大学。

再对比一下,热尔曼是一位非常有前途的人,却因为她的性别关系

甚至被拒绝进入大学讲演礼堂。她只能在教室门口听课, 或者向有同

情心的男同学借笔记来抄, 就这样她秘密地跟上进度。用高斯的话说,

她所取得的成功证明了她是一位“最具有勇气”[4] 的女性。

因此, 太多的女性根本没有实际接触过高级数学的世界。值得一

提的是上面提到的很多女性家庭都比较富裕, 而且拥有相应阶层的优

势。热尔曼可以随意使用她父亲的图书馆。萨默维尔偷听他哥哥的家

教课程。这些富裕家庭的女儿们显然有权选择不去顺应那些更合适宜

的方法。正如迈克尔�迪肯对贫穷女性的数学前途评论到,“贫穷和女

人气这一对无能的双胞胎太沉重了。”[5]

把这种情况与大致同一时期的女性作家比较一下很有趣。读和写

是贵夫人训练的一部分,尽管这只被看成是必要的社交技巧,而不是通

向艺术生涯的手段。但是,很多女性还是具备写作条件。如果她有充足

的时间,充足的训练和能力,她也许会利用这些条件去进行诗或文学的

创作。其中简�奥斯丁就是一个例子, 她的作品是她对周围人的生活

的仔细观察, 并通过她非凡的才能加以提炼而成的。奥斯丁会读、会

写, 她是一位艺术家。她创作的著作使她置身于英国文学伟人之列。
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很多女孩还是学习了一些初级的计算, 这倒是实事。但是与文学

不同,这种学习到此为止。高级数学的进步需要对几何、积分和微分方

程等学科的了解, 每一门学问都是以前者为基础的。如果没有相应的

训练, 几乎没人能够掌握它们。当女性的这种训练需求遭到拒绝时, 与

此同时她们也就被拒绝了接受数学工具。通向她们的科学未来的大门

被砰的一声关上了。我们将永远无法知道数学界的简�奥斯丁了, 因

为缺少必要的正规教育而被数学抛弃了。

这一切都已经成为过去。现在情况如何呢？表面上的障碍已经消

失, 各大学也不再强制执行诸如热尔曼遭遇到的对女性的禁令。正相

反,从美国各大学数学学科登记入学的数据来看, 我们有理由乐观。在

1990 年到 1991 年的这一学年, 美国研究机构授予了 14 661 个数学本

科毕业生。其中女生有 6917 人, 占 47%。这几乎接近一半的比率对于

一个世纪前男性占主导的数学领域是不可想象的。

但当我们再看一看高级学位时, 数据就令人很失望。就在同一学

年, 女性只占数学硕士学位的 2/5, 而且只占数学博士学位的 1/10。[6]

这种状况表明,尽管从数据上看进入本科教育的女性人数增长迅猛,但

是她们很少可能继续她们的训练,进入研究生层次,而从这里开始将产

生出明天的研究型数学家和大学教授, 所以这种状态仍然是男女不平

衡。

为什么女性不能继续进入研究生院呢？从历史上看, 很多女性立

志当一名大学预科层次的老师, 因此没有获得研究型学位的需要。在

某种情况下,因为身处如上描述的各种观念之下,较低的自我评价的确

对更高层次的成功产生了悲观的负面影响。其重要问题是勇气和寻找

能鼓舞士气并帮助扫除学习高级数学之路上的各种障碍的良师益友。

男性有太多同行和榜样;而女性在激烈的学术领域中总是感觉很孤单。

她们的正规教育之路在很多方面不同于她们的男性同伴。

甚至当女性战胜了各种负面的看法,获得了坚实的教育,还仍然存

在很多障碍：女性缺少除了日常生活需求之外, 全力从事她们工作的

支持。
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数学研究需要不受各方面干扰的大块时间。研究型数学家花很长

时间坐在那里思考。在过去如此, 今天也是如此, 这样大块的时间不是

所有人都拥有的。正如上面提到的那样, 最简单的方法就是非常富有。

据传说阿基米德有部分锡拉库扎王族的血统。洛必达 (1661―1704) 侯

爵非常富有,雇用约翰�伯努利在新兴微积分领域指导他,随后而闻名

欧洲。而我们上面所说的各位女性中, 夏特莱侯爵夫人是一位女侯爵,

而洛夫莱斯则是一位女伯爵, 阿涅西是富人家的孩子。这些人当中没

有人靠洗衣度日。

另一个方面的支持是欧洲的学术团体,这是那个时代的研究中心。

来自柏林、巴黎、圣彼德堡的赞助养活了无数的学者。在柏林和圣彼

德堡取得职位的欧拉就是一位利用这样的机会取得成功的数学家。

或者你有一份要求不高的工作, 允许你在闲置的时间进行研究和

沉思。我们已经提到过的莱布尼茨就是在巴黎的外交工作期间, 寻找

时间学习了数学并最终创造了微积分。地方法官费马似乎从来没有尽

力做法院的工作, 而是做数学研究。

总之,对于有潜力的数学家,有钱是无害的,成为学术团体的成员,

或者只有部分时间被雇用, 都是无害的。当然, 今天对数学家的主要赞

助是研究型大学,这些机构提供办公室、图书室、旅行费用、想法相似

的同事以及适度的教学任务。作为回报, 希望数学家对这门学科的前

沿做出深层次的思考。

对照一下女性的历史角色：在丈夫或兄弟在外面工作的时候待在

家里、抚养孩子、做饭、缝缝补补和照料家务杂事。即使她们有这方

面的训练, 一个女人从哪里得到时间去思考微分方程或者是射影几何

呢？对她们的期望是完全不同的。

事实上, 女性甚至很少有她们自己的空间。正如弗吉尼亚�伍尔

夫在这一类话题的短文中提醒我们的那样,女性很少有独处、思考、写

作 (或进行数学研究)的空间。伍尔夫讲述了莎士比亚富有想象力的妹

妹朱迪思的一个故事,她完全有她的哥哥一样的才能,在威廉全身心投

入他的作家生涯的时候, 她的生活就是负责家庭的日常需要。据伍尔
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夫说, 莎士比亚的妹妹

和他一样, 敢做敢为, 富于想象力, 热切希望了解这个世界。但是

她没有被送去学校。她没有机会学习语法和逻辑, 只能读一点贺拉斯

和维吉尔的东西。她偶尔拿起书⋯⋯看几页。然后,她的父母就会走进

来告诉她去补补长袜或者留心做饭, 而不是沉迷书本和纸墨。[7]

兄妹俩, 一个是支持的提供者, 而另一位却是接受者。这种差别也

太大了。

再说一下莱昂哈德�欧拉, 13 个孩子的父亲。必须有人来抚养他

们, 替他们换尿布, 清洗他们的衣服。但是这个人不是莱昂哈德。再看

一下锡里尼哇沙�拉玛奴金 (1887―1920), 他是 20 世纪初一位非常有

才华的数学家。但在日常生活中, 他却显得像一个孩子那样无助,他的

妻子照顾他需要的每一件事情。再看保罗�厄多斯, 这个人我们在第

A 章遇到过, 在他 21 时才学习如何往面包上涂黄油。显然, 在他进行

数学发现的初期, 他得到了来自母亲的不同寻常的支持。

如果交换一下,情况又如何呢？欧拉夫人、拉玛奴金夫人和厄多斯

夫人如果在数学上取得了成功, 她们的另一半会满足她们的日常生活

需要吗？如果这些女性已经成名, 那么她们可以投入大块的时间去研

究数学吗？没有人会知道答案。但是,如果女性能够得到与这些男人相

同的支持, 那么她们会有更多人出现在数学编年史中。这是毫无疑问

的。

在索菲亚�柯瓦列夫斯卡娅这位“20世纪前最伟大的女数学家”[8]

的生活之中,上面提到的所有障碍,如数学教育方面的负面观念和困难

以及缺少系统的支持, 都出现过。

1850 年初柯瓦列夫斯卡娅出生在莫斯科, 在一个比较富裕的书香

之家长大, 她是一名英语家庭教师, 并有机会学习数学。有一个很有

趣的故事,说她卧室的墙上贴满了她父亲的微积分课程的旧讲义笔记。

这位年轻的姑娘被这些奇怪的公式深深吸引了, 它们就像朋友一样静

静地围绕在她的身边。她发誓有一天一定要知道其中的秘密。

当然, 这需要训练。一开始, 她学习了算术。她被允许参加她堂兄
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的家教课程, 基本上是为了骗他更加努力学习。就这样她获得了代数

知识 (即便他还不会)。接下来, 柯瓦列夫斯卡娅从住在附近的物理学

家那里借来一本他写的书看。在读这本书时, 她遇到了三角学的困难,

这是一门她几乎一无所知的学科。不愿意放弃但又找不到适当的指导,

柯瓦列夫斯卡娅就从零开始做起了研究。当她的物理学家邻居意识到

她在做什么的时候, 他惊奇地观察到,“她已经第二次创造了整个三角

学这门学科。”[9]

这样的成就显示了超凡的数学创造力。在她 17岁的时候, 她和她

的家庭来到圣彼德堡,在那里柯瓦列夫斯卡娅说服了反对她的父亲,接

受了微积分的家教课程。尽管她是一位女性, 但是凭借如此的才能她

本应该立即进入大学。遗憾的是,对于一位 19世纪的俄罗斯女性来说,

她没有这样的选择权。

以现代的观点看, 她对这些令人失望的事情的反映有些极端。在

她 18 岁的时候, 在她的安排下, 与一位准备前往德国的年轻学者进行

了权宜结婚,她希望通过这样的婚姻得到进一步接受高等教育的机会。

这个男人是弗拉基米尔�柯瓦列夫斯基, 一位自愿参与这次“虚构婚

姻”的古生物学者,因为这对女性解放有利。他们两个人动身去了海德

堡大学,表面上维系着这样的婚姻,事实上各自从事着自己感兴趣的研

究。

柯瓦列夫斯卡娅在海德堡一如既往表现得非常出色,所以 1871年

她瞄准了更高的目标：柏林大学, 以及它令人尊敬的高级数学教授卡

尔�维尔斯特拉斯 (1815―1897)。下定了决心的柯瓦列夫斯卡娅安排

了一次与这位世界著名学者的见面, 恳求他的指导。维尔斯特拉斯给

她提出了一些非常有挑战性的问题就把她打发走了, 目的在于他不希

望再见到她。

但是, 他还是再一次见到了她。一周后,柯瓦列夫斯卡娅手里拿着

答案回来了。用维尔斯特拉斯的评价说, 她的工作展示了“对维度的

直觉天分⋯⋯甚至在过去的学生或者层次更高的学生当中都是很少见

的。”[10] 她使当时世界最具影响力的数学家之一的这位怀疑论者加入
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到她的羡慕者行列中。

由此, 年老的维尔斯特拉斯和年轻的柯瓦列夫斯卡娅开始了一段

长期的合作。她的精力和洞察力赢得了他真诚的尊敬, 而且他还安排

她与欧洲很多数学团体接触。在他的指导下, 柯瓦列夫斯卡娅开始研

究偏微分方程、阿贝尔积分以及土星环的动力学。由于这些成果, 1874

年她获得了哥廷根大学数学博士学位。她是第一位获得现代大学博士

学位的女性。

贯穿她的一生,柯瓦列夫斯卡娅不仅对数学感兴趣,而且对社会和

政治公平等议题也感兴趣。作为一名自由主义事业的支持者, 她支持

女权和波兰人的自由。当时她给一家激进报纸写文章。在她丈夫的帮

助下, 1871 年公社期间她秘密进入巴黎, 当时这座城市被俾斯麦的军

队包围。在这次冒险中, 她的确被德国士兵击中了。到了巴黎, 她病倒

了, 并受了伤, 还与被包围的这座城市的激进派领导人取得了联系。这

就是一个渴望实现她的社会信念的人物。

另外, 除了是科学家和革命者外, 她还是一位作家。柯瓦列夫斯卡

娅写小说、诗歌、戏剧以及《童年的回忆》, 这是一本自传式的童年记

录。她是在俄罗斯渡过的青春,因此她见到过杜斯妥也夫斯基,在后来

的生活中又认识了屠格涅夫、契科夫和乔治�爱略特。这位有社会责

任感的数学家进入了著名的艺术圈子里。

总之, 索菲亚�柯瓦列夫斯卡娅拥有各种惊人的才能。聪明、果

断、伶牙俐齿, 因此她被同时代人描绘成为“简直是光彩夺目。”[11] 这

里给出的一幅画像展示了她超凡脱俗的人格魅力, 人们写了很多关于

她的畅销书或电视连续剧。

如同所有连续剧一样, 她的故事以喜剧开场却以悲剧收场。尽管

她的婚姻背景很特殊,但是她与丈夫发展成真正的爱情,这一对夫妇于

1878 年有了一个女儿。但是五年后, 一次失败的生意使他失去了大量

金钱之后, 沮丧的弗拉基米尔�柯瓦列夫斯基摄取氯仿自杀了。索菲

亚成了寡妇和单身母亲。

幸运的是她还是世界一流的数学家。在维尔斯特拉斯的另一名弟
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子米特格–雷弗勒的热情帮助下,她被指定到瑞典的斯德哥尔摩大学任

教。1889 年她成为这一职位的终身教授, 这在数学界对女性来说也是

第一次。

苏维埃邮票上的

索菲亚�柯瓦列夫斯卡娅

在斯德哥尔摩的那段日子也并非没有困难。对女性固有的偏见又

阻碍着她对进步事业公开而坚定的支持。那些保守的学者们因为对她

的数学无可挑剔, 转而指责她与一位著名的德国社会主义者接触。而
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维尔斯特拉斯和米特格–雷弗勒委婉建议柯瓦列夫斯卡娅应该采取更

谨慎的政治态度。但是她没有这样做。

在数学这一边, 她被指名担任《数学学报》杂志的编辑, 这是担任

这一职位的第一位女性。她与埃尔米特和切比雪夫 (我们在前一章遇

到过他) 等数学家联系, 并成为俄罗斯数学团体和西欧数学团体的重

要纽带。1888 年柯瓦列夫斯卡娅获得法国科学院的鲍廷奖, 获奖理由

是她的论文《刚体绕固定点的旋转问题》, 由此国际名声、报纸文章以

及贺信迎面扑来。这样的喝彩声足以使她获得俄罗斯的皇家科学院的

会员资格 (作为一名女性, 在她的祖国, 这样一个学术职位还不足以养

活她)。

因此, 1891 年充满希望的未来似乎就摆在这位著名人物的前面。

但是没有想到的是灾难突然降临。在去法国的途中, 柯瓦列夫斯卡娅

咳嗽, 好像就是普通的感冒。但是, 当她返回到斯德哥尔摩时, 在那样

阴雨和寒冷的气候条件下, 她的身体状况变得更糟。返回家里, 她变得

太虚弱以至于无法工作。一次昏迷过后, 1891 年 2 月 10 日, 柯瓦列夫

斯卡娅去世, 年仅 41 岁。

一如既往,当这样一位天才永远地去了的时候,她给世人留下了惊

叹、无尽的怀疑和没有实现的梦想。整个欧洲传来了它们的赞美之声,

随之而来的悲伤也是真诚的。我们无法知道柯瓦列夫斯卡娅还会为数

学做出什么样的贡献, 我们也无法知道这样的贡献会使这门学科中女

性的地位提高多少。

柯瓦列夫斯卡娅这样的天才是罕见的, 但是自她去世后, 在本世

纪, 数学领域中女性已经越来越普遍。同时随之出现了一个麻烦的问

题。通过把本章献给女性数学家, 我们是否因排斥女性, 把她们当作另

类而有罪恶感呢？随着女性开始进入医学或法律等专业领域, 很少有

人谈及“女医生”或“女律师”。在本章, 我们并不是说数学职业应该

分成两组：数学家和女数学家。这当然不是我们的意图,而且它也不是

真实的现状。但是, 有这样的危险。

这是朱莉娅�罗宾森的观点。随着她声望的增大, 当她进入美国
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科学院并获得麦克阿瑟奖的时候, 罗宾森被认为是男性领地上获胜的

女性。在一篇非常重要的短文中, 她写道:“所有这些关心都是令人愉

快的,但也令人感到困惑。我就是一名数学家。我更希望仅仅因为我证

明了一些定理或者解决了一些问题而被记住, 而不是因为是第一位这

样、那样的女性。”[12] 对此的适当回应是：“阿门！”

尽管需要进一步根除女性所面对的不平等, 我们有理由对实现罗

宾森的愿望充满信心。随着很多偏见和障碍的消失,数学注册人数 (女

性)已经开始增加。即使这个问题没有得到完全解决,但是不可否认进

步的事实。我们希望,在不远的将来,提出“女性在哪里？”这样的章节

被认为完全没有必要。
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本章一下子就用掉了字母表中的两个字母,同时,它的话题也在前

面章节中反复出现过, 它如此基础, 因此似乎永远存在。

我们考虑这样一个坐标轴的系统, 水平和垂直栅格重叠于平面上,

它给出这个二维平面上每一个点的数值地址。水平轴, 即所谓的 x 轴,

有向右增加的数值刻度, 而垂直轴, 即 y 轴, 有向上增加的刻度。这样,

几何点与它的数值坐标之间相互对应。

当然, 只画出一个点是没有意

思的。当我们有诸如 y = x2 + 1 这

样的方程, 并把它解释成为平面内

满足关系 y = x2 + 1 的所有 (x, y)

点的集合时, 情况就变得错综复杂

起来。在定位了很多这样的点后,代

数方程生成了一条几何曲线, 对于

上面的情况, 就是如图 XY-1 所示

的抛物线。

代数与几何的这种关联似乎相

当自然, 因此我们很惊讶地认识到

5

−5

−5 5
x

y

y = x2 + 1

图 XY-1
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只有到了近代才把二者联系了起来。尽管欧几里得几何可以追溯到大

约 2000 年前, 当时没有代数, 但分析几何的出现也还不到 4 个世纪。

这使得它比诸如对数、《罗密欧与朱丽叶》、波士顿还年轻。

这门学科如同其他很多数学革新一样, 出现在 17世纪。革新者是

皮埃尔�费马和勒内�笛卡儿, 他们都是法国人, 都聪明绝顶, 都是数

学发展中的重要人物。正如前面的章节提到的那样, 费马对坐标几何

的革新比他对数论做出的举世闻名的贡献要逊色得多。另外, 由于费

马在论文发表上的拖延降低了他的影响,到了他的成果问世时,这一思

想的新颖性已经不复存在。于是, 分析几何的荣誉就落到了它的第一

位发表者勒内�笛卡儿的身上。

那一年是 1637 年。笛卡儿完成了一本巨作《方法论》, 它是科学

革命的哲学指南。在这本书之后附加了一个标题为《几何》的附录, 类

似于事后的思考。笛卡儿是这样开始的：“几何中的任何问题都能够简

单地简化成这样的一些关系, 诸如从特定直线的长度就足以知道它的

构造⋯⋯我毫不犹豫地把这些算术关系引入到几何中。”[1] 因此,此前

只有理想几何图形的空荡荡的欧几里得平面,现在充满了数值,即笛卡

儿的“算术关系”, 用以衡量它们的长度, 标示它们的位置。

遗憾的是, 大部分读者都发现《几何》不容易理解。甚至连艾萨

克�牛顿都承认最初他没有理解笛卡儿的方法。几年后一位传记作家

是这样写的, 牛顿

把笛卡儿的几何拿在手里, 他被告知它非常难, 他看了其中十几

页, 停了下来, 再看, 比上一次看的多了一些, 又停了下来, 又一次回到

起点, 坚持往下看, 直到完全掌握为止。[2]

如果牛顿读起来都感到困难,可以想象没有天分的学生们的状况！

笛卡儿的特点就是警告他的读者：“我不会停下来更加详细地加以解

释, 因为那样我会剥夺你自己掌握它的愉悦⋯⋯在这里我没有发现太

难的东西会让熟悉普通几何和代数的人都不能理解。”[3]

笛卡儿在向梅森介绍他的书的时候, 他非常直率。他写道:“我已

经删掉很多使其更清楚的东西,但是我是有意这样做的,不会说得再明
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白了。”[4] 我奉劝所有立志编写教材的人,不要学习这种在数学描述中

有意避开清晰的隐晦哲学。

勒内�笛卡儿肖像

(默兰伯格学院图书馆惠允)

幸运的是,还是有人能够用更容易理解的术语重新展示这些思想。

阿姆斯特丹的弗兰斯�凡�斯霍滕 (1615―1660)编辑的《几何》版本在

笛卡儿原创著作的 12 年后登场, 附加了大量有帮助的注释, 从而使这

门学科容易被更广大的读者理解。极其重要的是, 在艾萨克�牛顿和

戈特弗里德�威廉�莱布尼茨各自独立地追击微积分发现的时候, 他

们从笛卡儿著作的斯霍滕版本得到了非常大的帮助。

他们研究的这门学科与其现代版本不同。当时, 各轴不是总被画

成互相垂直; 有的时候, 根本不画 y 轴; 对负数的厌恶经常把工作限定
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在平面的右上区域, 即所谓的第一象限, 其中 x 坐标和 y 坐标都是正

的。只需要片刻就可以把这个区域挑出来。

对这门学科做出贡献的一个人是牛顿本人, 但是他对这门学科的

影响往往消失在他其他成就的光环之中。他的论文《三次曲线枚举》

写于 1676 年并于 1704 年出版 (这显然是牛顿式的拖延), 现在把这篇

论文描绘成“可以说是分析几何的真正诞生”[5] 的著作。在这篇论文

中, 牛顿引入、分析且极其精确地绘制了 72 种不同种类的三次方程。

显然他那极大的耐力满足且平息了他对分析几何的似火的热情。

因此,由于笛卡儿和费马的革新以及牛顿随后的贡献,这门学科被

建立起来而且被标准化。今天对于我们来说轻易就能够浓缩这一成就,

用显然而简单的一步把它写出来。但是, 历史证明事后看似显然的事

实也许距离一目了然相差很远。朱丽娅�罗宾森是这样描述一个麻烦

的数学问题的：

当我非常接近某个问题时,被告知有些人认为我缺乏眼光,因此我

自己是不可能看出答案的。另外,也没有其他人能够看明白它。有很多

事情,一直就躺在沙滩上,但我们不会看到,直到有人拾起它。然后,我

们都看到它了。[6]

这段话完美地描述了发生在 17 世纪的几何与代数的结合。

从这开始, 分析几何有两个重要但相互对立的议题。其一,让代数

为几何服务; 其二, 让几何为代数服务。综合看来, 这产生了一种数学

上的共生关系, 这个问题的每一个侧面都从与它相关的另一个侧面得

到好处。

在很大程度上, 笛卡儿是前者的倡导者。即他常常从几何问题开

始, 并运用代数技巧去求解。对他来说, 他的更加现代的符号代数的想

法也许能够解决欧几里得几何这一古老学科的问题。

更具费马特色的另一种趋势最终证明更重要。它是从一个代数表

达式开始,然后利用这个表达式在平面上生成一个几何图形,如我们利

用上面的 y = x2 +1所做的几何图形,又如牛顿在绘制他的 72个立方

体时所做的那样。费马脑子里有这种方法, 他写道:“每当我们找到两
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个未知量的等式,我们就有一条轨迹,它不外乎描绘的就是一条直线或

者曲线。”[7] 费马的预见使得数学家们可以通过绘制更复杂的方程的

点而生成新曲线, 卡尔�博耶把它称为“数学史中最有意义的陈述之

一。”[8]

在分析几何出现之前, 曲线

的来源被局限于“自然地”出

现的那些曲线。数学家们熟悉

圆、椭圆和螺旋线, 因为它们都

出自著名的几何问题。但是像图

XY-2 中的方程

y =
4x + 3
x6 + 1

+ 2x − 2

的图像完全无法想象。通过虚构

奇怪的方程, 数学家生成了之前

从来没有看到过的穿越 xy 平面

的弯弯曲曲的曲线。通过获得这

样的大量的曲线细节, 他们对曲

线有了更深入的理解, 事实证明

这对微积分的发现至关重要。

2

−1
−1 1

x

y

y =        + 2x − 24x + 3

x6 + 1

图 XY-2

在本章的后半部分, 我们考虑分析几何的相互对立且基础的两个

侧面。首先我们看一下审视曲线的几何性质是如何指导我们理解它的

代数性质的。

实际上,我们已经在本书的其他地方看到过很多这种现象的例子。

几何图形激发我们讨论微分和积分, 特别是在我们发展牛顿方法中更

为突出。第 D 章就出现了一个非常简单的例子, 那就是卡尔达诺声称

不存在其和等于 10、积等于 40的两个实数。我们已经利用微积分的极

大值技巧证明了他的断言。但是,只需要看一下乘积函数 y = −x2+10x

的图像, 上面的所有事情就解决了, 图 D-9 给出了这个函数的图像, 我

们在图 XY-3 中重新画出这一图像。

我们曾经说过,上面问题中的积一定是这条曲线上的点的 y 坐标,
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显然, 它们的积不能达到 40。这个

图示立即清楚地展示出可能的最大

积, 即这条曲线的最高点 25。对这

两个数的积的限制,即代数关系,可

以从这条曲线的相应几何性质明确

地表现出来。

我们也可以返回到第 K 章, 在

那里我们说任何代数技巧都无法给

出诸如 x7−3x5 +2x2−11 = 0这样

的方程的精确解。对于诸如此类的

问题, 我们沿用牛顿的方法, 即给

出一个求近似解的方法。但是,有一 图 XY-3

个不同的思路可以得到近似解,它仅需要引入分析几何,尽管这一方法

效率更低。

图 XY-4

首先, 我们绘制 y = x7 − 3x5 + 2x2 − 11 的图像。当然, 徒手绘制

这样的曲线是一个非常可怕的问题; 对这样的方程进行描点可能令人

生畏地麻烦。然而, 技术使这个问题变得容易了。有了计算机软件, 甚
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至是你手中的计算器都可以在几秒钟之内找出比人类在一个月内找出

的还要多的点来绘制类似于这样方程的曲线。这就是图 XY-4 给出的

示意图。

因为我们希望求解方程 x7 − 3x5 + 2x2 − 11 = 0, 所以我们必须找

到某个 x值,它使得我们上面的方程中的 y = 0。这个值就是图像穿越

x 轴时的所谓 x 截矩的第一坐标。看一下图 XY-4, 显然只有一个这样

的截矩, 所以我们的七次方程只有一个解。我们需要做的就是瞄准这

个数值。

图 XY-5

拥有“放大”功能的计算

器和手边的软件使得我们能够

更精确地找到这一点。这就像

我们用放大镜来放大图像某一

部分一样。我们首先在靠近我

们要放大的地方确定一个点,

在上面的例子中这个点就是比

x = 2 略小的地方, 随后给出正

确的指令。如图 XY-5 所示, 其

结果给出了这个截矩周围的一

个放大区域。根据图像的几何走势,显然这个解位于 x = 1.8附近的某

个地方。

如果这个解不够精确, 那么我们就再放大一次。我们可以一直这

样做下去, 直到找到 x 轴的一个非常小的区间, 比如说只有 0.000 01

个单位长度,在这一区间内这条曲线穿过这个轴。利用这样的方式, 我

们可以近似这个 x 截矩到一个很高的精确度。

对于现在的这个例子, 在找到 x = 1.799 829 5 这个近似解之前我

们只放大了几次。为了检验一下, 我们把这个值代入到原来的方程中

得到

(1.799 829 5)7 − 3(1.799 829 5)5 + 2(1.799 829 5)2 − 11 = −0.000 004
所以我们已经非常接近于 0。要感谢绘图计算器,无需丝毫的痛苦就完

成了。
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在结束这个问题之前, 我们要做两点重要的说明。第一, 这样的

求解所需的技术是几十年前无法想象的,但是对于今天来说却很平常。

在几秒钟之内计算和寻找点所需要的硬件是工程师给数学家的礼物。

更重要的是,尽管这是一个非常基础的代数问题,寻找七次方程的

解, 但是我们却使用穿越 x 轴的曲线的几何性质得到了我们的解。对

于这种情况, 数学家们谈论的是“可视化的威力”, 却很少说是受惠于

计算机辅助的分析几何的威力。

上面的例子实际上就是几何服务于代数的例子。现在, 我们反过

来利用代数武器证明几何定理。我们需要两个预备知识：用代数方法

处理距离和斜率。因为我们已在第 D 章中讨论了后者, 所以我们首先

讨论一下前者。

假设给定了图 XY-6 中的两个点 P 和 Q, 要求我们寻找它们之间

的距离, 就是图中的实线 PQ 的长度。如图所示, 设这两个点的坐标

分别是 (a, b) 和 (c, d), 我们画出虚线, 从而形成直角三角形 PQR。读

取 x 轴的长度, 我们看到 PR = c − a; 同样, 读取 y 轴的长度, 得到

QR = d− b。于是, 根据毕达哥拉斯定理, 我们有

P与Q之间的距离 =
√

PR
2

+ QR
2

=
√

(c− a)2 + (d− b)2

不用惊讶, 这就是解析几何中的距离公式。

图 XY-6
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对于斜率的代数公式, 我们回忆一下第 D 章的内容, 图 XY-6 中

的 P 与 Q 之间的直线的斜率是

m =
垂直上升

水平移动
=

d− b

c− a

在此我们要警告一句：如果直线是垂直的, 那么其上任意两点都有相

同的第一坐标,于是上面的斜率公式中的分母为零。因此, 其结果不是

一个真实的数, 我们说垂直直线的斜率是无定义的。为了避开这样的

麻烦, 在后面的内容中我们说所有线都不是垂直的。

斜率的概念给我们提供了平行线和垂直线的代数特征, 而这两个

几何概念早在欧几里得几何中就已出现。斜率的直觉就是“倾斜度”,

因此很显然, 两条直线平行当且仅当它们有相同的斜率。但是, 垂直的

类似特征却不是一目了然, 因此值得简单讨论一下。

假设两条直线相交成直角。为了进入解析几何领域, 我们建立坐

标轴, 如图 XY-7 所示, 它以两条直线的交点为原点。

图 XY-7

在每一条直线上, 取长度为 1的一段, 终点分别是坐标为 (a, b)的

P 和坐标为 (c, d) 的 Q。根据上面的距离公式有

√
(a− 0)2 + (b− 0)2 = OP = 1,因此
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a2 + b2 =
(√

a2 + b2
)2

= 12 = 1

根据同样的理由得

c2 + d2 =
(√

c2 + d2
)2

= 1

因此, 我们得到
a2 + b2 + c2 + d2 = 1 + 1 = 2 (∗)

现在我们画出虚线 PQ, 形成直角三角形 POQ。毕达哥拉斯定理

保证有

PQ =
√

12 + 12 =
√

2

另一方面, 根据我们得到的距离公式有

PQ =
√

(c− a)2 + (d− b)2

使这两个结果相等并两边平方, 根据上面的等式 (∗) 得

(
√

2)2 = (
√

(c− a)2 + (d− b)2)2,因此
2 = (c− a)2 + (d− b)2 = c2 − 2ac + a2 + d2 − 2bd + b2

= (a2 + b2 + c2 + d2)− 2ac− 2bd

= 2− 2ac− 2bd

因此,2 = 2− 2ac− 2bd → 0 = −2ac− 2bd → ac = −bd。

在我们把斜率引入到我们的讨论之后, 这最后一个方程的意义是

显然的。通过 O 和 P 的直线的斜率是

m1 =
b− 0
a− 0

=
b

a

而连结 O 和 Q 的直线的斜率是 m2 = d/c。因此我们有

m1 ×m2 =
b

a
× d

c
=

bd

ac

=
bd

−bd
因为我们刚刚证明了ac = −bd

= −1
因此, 当两条直线相互垂直时, 它们的斜率的积是 −1。这看起来

似乎有点特别,但是这只是把毕达哥拉斯定理转化到解析几何的世界。
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如果这些线相交于其他地方而不是原点又如何呢？例如, 考虑垂

直相交于图 XY-8 左边的点 (r, s) 的两条直线。我们可以把整个图形

向下滑动 s 个单位, 再向左移动 r 个单位, 这样就把交点移动到了点

(0, 0), 并同时保证直线的倾斜度不变, 其示意图如图 XY-8 右边的图

形。这样的效果就与图 XY-7 类似, 而前面的讨论表明移动后的直线

的斜率之积等于 −1。但是原来的直线的倾斜度与移动后直线的倾斜

度相同, 所以它们的斜率之积也是 −1。

图 XY-8

以上面的说明为前奏, 我们要用代数工具证明一个几何定理。我

们的推理需要距离公式、斜率的记法和平行线及垂直直线的特征, 一

句话, 我们要使用刚才几页里集合起来的所有武器。这个命题是关于

菱形的命题, 所谓的菱形就是所有边都相等的平行四边形。

定理 如果一个平行四边形的对角线相互垂直, 那么这个平行四边形

是菱形。

证明 首先,图 XY-9给出一个平行四边形 OABC。它的顶点 O 在原

点上, 边 OA 沿 x 轴到点 (a, 0), 使得 OA = a。(如果所给的平行四边

形不是这个样子,我们总是可以移动并旋转它,而不改变各边的长度以

及相对位置, 使它如图 XY-9 那样放置。)

点 C 有坐标 (b, c), 因为这个图是平行四边形, 边 CB 一定平行于
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x轴。这保证了点 C 的第二坐标和点 B 的第二坐标相同,所以我们设

B 的坐标为 (d, c)。但是, 边 OC 和 AB 也是平行的。这表明
c

b
=直线OC的斜率 = AB的斜率 =

c

d− a

交叉相乘得到 c(d − a) = bc。根据这个式子我们有 d − a = b, 或者等

价地写成 d = b + a。

图 XY-9

现在, 对于这个平行四边形, 我们做出了一个重要假设：它的对角

线 OB 和 AC 是相互垂直的。正如已经看到的那样, 这表明它们的斜

率之积等于 −1。因此我们有

−1 = (OB的斜率)× (AC的斜率) =
c

d
× c

b− a

=
c

b + a
× c

b− a
, 因为我们已经证明了d = b + a

=
c2

b2 − a2

但是因为
c2

b2 − a2
= −1

我们看到, b2− a2 = −c2, 或者简单地写成 a2 = b2 + c2。于是根据距离

公式,

OC =
√

(b− 0)2 + (c− 0)2 =
√

b2 + c2

=
√

a2 根据上面的结论 = a = OA
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总之, OC 和 OA 有相同的长度。

现在, 收尾工作就很容易了。CB 的长度是√
(d− b)2 + (c− c)2 =

√
(d− b)2 = d− b = (b + a)− b = a

所以 CB 和 OA 有相同的长度。最后

AB =
√

(d− a)2 + (c− 0)2 =
√

b2 + c2 = OC = OA = a

因此, 平行四边形 OABC 的 4 条边的长度都相等。它是一个菱形, 证

明完毕。 ¥
正如读者可能意识到的那样, 这个结果在欧几里得几何的领域内

很容易得到严格的证明, 在那里我们使用的是非常有用的全等三角形

的工具以及平行线的内错角等工具。上面这个证明的意义在于它的代

数性质。接受笛卡儿的劝告,我们也“毫不犹豫把算术关系引入到几何

中”, 并因此通过一连串的方程证明了我们有一个菱形。

还可以给出很多更有意义的例子来支持分析几何。例如, 分析几

何是研究诸如椭圆、抛物线和双曲线等圆锥截面的极好平台。在 xy 轴

的框架内, 这些图形比希腊人看成的圆锥体的各种横截面更容易理解。

然而, 这一章的内容已经达到了预期目标。还有, 如果在这里讨论

圆锥截面, 那么我们“也许就会剥夺你自己掌握它的愉悦”。因此, 结

束之际我们送给 xy 平面的分析几何最后一句赞美, 它是几何和代数

的熔合, 是整个数学中最幸福的婚姻。
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这最后一章的标题似乎表明, 我们不知道选用什么样的词。事实

上, 选择单独一个字母的标题非常合适, 因为这一部分的内容是复数,

在数学家的字母表中是用字母 z 来表示它们的。

我们的目标是要描述复数是什么,它们是从哪里来的,以及为什么

它们在现代数学中承担重要的角色。它们有一个痛苦的过去, 人们需

要放弃普遍持有的对“数”的意思的偏见。根据希腊神话, 雅典娜是突

然完完全全从她父亲宙斯的头颅中跳出来的,但是,正如我们将看到的

那样, 历时许多世纪, 虚数从很多数学家的脑袋里出现又消失。

为了了解为什么对这个概念如此烦恼, 我们必须看一下我们熟悉

的实数的性质。正如每个人都知道的那样, 非零数分成两种, 正的和负

的, 而零不属于任何范畴。它们的算术必须符合各种规则,但是为了我

们的讨论, 只重点说明其中的一个：两个正数之积和两个负数之积都

是正的。例如 3× 4 = 12, 而且 (−3)× (−4) = 12。

然后, 假设我们要求一个负数的平方根, 例如
√−15。这引起真正

的麻烦 (恕我直言)。对于任何数, 当把它平方后, 都是正的或者零; 所

以没有平方后等于 −15 的数。正如我们的数学先驱所评论的那样, 像√−15 这样的量应该作为凭空想象的事物而被驱逐出去。
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然而, 好想法是很难被压下去的。这在为方程求解做出重要贡献

的 16世纪印度代数学家的著作里清晰可见。就这样, 他们不经意间偶

然发现了负数的平方根。

正如我们在第 Q章中提到的那样,这一时期的数学家仍然对负数

的概念感到困惑, 更不用说它们的平方根了。我们在吉拉罗莫�卡尔

达诺 1545年的《大术》中对四次方程的处理过程中看到了这个讨厌的

东西。例如, 他能够处理称为“平方加上 cosa 等于数”的情况 (其中,

cosa 是要求的未知量)。用现代记法, 这类似于方程 x2 + 3x = 40。但

是, 他避开考虑“平方减 cosa 等于数”, 即他不考虑诸如 x2 − 3x = 40

这样的方程。这样的方程包含一个负量, 因此它被污染了。

作为替代, 卡尔达诺描述了求解方程 x2 = 3x + 40 的过程。从我

们今天的观点看, 这个方程等价于方程 x2 − 3x = 40, 不需要单独分成

一种情况。但是, 在负量受到如此消极的冷遇的世纪里, 我们说这样的

代数转变是不可避免的。

不相信独角兽存在的那些人会觉得谈论它们吃东西的习惯很可

笑。同样, 对负数的存在持有怀疑的人也肯定认为它们的平方根是荒

谬的。然而, 正是卡尔达诺利用一个他在《大术》中提出的问题, 在这

一方向上迈出了尝试性的一步：“有人对你说, 把 10 分成两部分, 其中

一部分与另外一部分之积等于 40。”[1]

卡尔达诺提到,这个解是不可能存在的。的确, 不存在具有这一性

质的两个真正的数, 我们在第 D 章用微积分已经给出了证明。“尽管

如此,”他说,“我们将用这一方式求解它,”并给出了这样的解

5 +
√−15 和 5−√−15

这些答案合理吗？首先, 它们的和是

(5 +
√−15) + (5−√−15) = 5 + 5 = 10

所以他的确把“10分成了两个部分”。为了确定这两部分的积,我们运

用熟悉的乘法法则

(a + b)(c + d) = ac + ad + bc + bd

即第一个括号里的每一项与第二个括号里的每一项相乘。这样得到
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(5 +
√−15)× (5−√−15) = 25− 5

√−15 + 5
√−15− (

√−15)2

= 25− (−15) = 25 + 15 = 40

因为 (
√−15)2 = −15。所以, 卡尔达诺似乎已经发现了把 10 分成两部

分且它们的积是 40 的方法。

但是他的解是“数”吗？
√−15 是什么？卡尔达诺对他自己的答案

感到的困惑多于相信, 他称它们是“莫明其妙”, 而且把它们刻画成为

“毫无用途同时不可思议”，很难唤起对一个新数学概念的认可。[2]

如果没有这些意大利数学家在三次方程代数解方面所取得的伟大

成就, 负数的平方根也许会被抛弃了。在《大术》中, 卡尔达诺首先给

出了“立方加上 cosa 等于数”即形如 x3 + mx = n 的方程的解, 其中

m 和 n 是实数。他通过把三维立方体分解成不同的部分, 用几何方法

解决这个问题, 用现代的代数记法, 他的解是

x =
3
√

n

2
+

√
n2

4
+

m3

27
−

3
√
−n

2
+

√
n2

4
+

m3

27
上面这个公式在求解如 x3 + 24x = 56 这样的三次方程时非常好

用。其中 m=24, n=56, 我们计算得到√
n2

4
+

m3

27
=

√
562

4
+

243

27
=
√

784 + 512 =
√

1296 = 36

然后, 根据上面的卡尔达诺的公式, 这个三次方程的解是

x =
3
√

56
2

+ 36−
3
√
−56

2
+ 36

= 3
√

28 + 36− 3
√−28 + 36 = 3

√
64− 3

√
8 = 4− 2 = 2

的确, x = 2 满足方程, 因为 23 + 24(2) = 8 + 48 = 56 正是所需要的。

每一件事都进展得很顺利。

但是, 对于 x3 − 78x = 220 情况又如何呢？这里我们有 m =

−78, n = 220, 所以有√
n2

4
+

m3

27
=

√
2202

4
+

(−78)3

27
=
√

12 100− 17 576 =
√−5476

我们遇到了这可怕的负数的平方根。卡尔达诺完美的立方公式遇到了

麻烦。
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令数学家感到头痛的是这个三次方程 x3 − 78x = 220 的确有一个

实数解,即 x = 10。(很容易验证 103− 78(10) = 1000− 780 = 220。)另

外, 我们还可以找到另外两个实数解：−5 +
√

3和 −5−√3。这种状况

最令人不满,因为这是一个有三个实数解的实三次方程,但卡尔达诺的

公式似乎没有办法找到它们。学者们比以往任何时候都感到困惑。

整整一代过去了, 事情没有转机, 直到另一位意大利数学家, 拉斐

尔�邦贝利 (约 1526―1572) 在 1572 年的《代数》里有了惊人的见解。

他建议说, 在从实三次方程求它的实数解的过程中至少可以暂时引入

负数的平方根。这样, 这些奇怪且麻烦的数将成为求解三次方程的中

间工具。

为了弄明白邦贝利想的是什么, 我们返回到前面例子出现麻烦的

地方。暂时抛开针对负数平方根的任何偏见, 我们这样书写√−5476 =
√

5476× (−1) =
√

5476×√−1 = 74
√−1

因为
√

5476 = 74。然后,把卡尔达诺的公式运用于三次方程 x3−78x =

220, 得到

x =
3
√

n

2
+

√
n2

4
+

m3

27
−

3
√
−n

2
+

√
n2

4
+

m3

27

=
3
√

220
2

+
√−5476−

3
√
−220

2
+
√−5476

=
3√

110 + 74
√−1−

3√
−110 + 74

√−1 (∗)
这似乎使得事态变得更遭,因为我们不仅保留了 −1的平方根,而

且还使它嵌入到三次方根之中。然而, 邦贝利意识到, 如果小心翼翼地

处理, 这个表达式可以完成它的工作。

我们需要一些计算来看一看为什么。首先, 注意到

(5 +
√−1)(5 +

√−1) = 52 + 5
√−1 + 5

√−1 +
√−1

2

= 25 + 10
√−1 + (−1) = 24 + 10

√−1

在这里我们使用了
√−1

2
= −1 的事实。换句话说, 我们证明了 (5 +√−1)2 = 24 + 10

√−1。我们把这个展开再进行一步, 计算得到
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(5 +
√−1)3 = (5 +

√−1)× (5 +
√−1)2 = (5 +

√−1)× (24 + 10
√−1)

= 120 + 50
√−1 + 24

√−1 + 10(
√−1)2

= 120 + 74
√−1 + 10(−1)

= 120 + 74
√−1− 10 = 110 + 74

√−1

这也许会使数学家们热血沸腾, 因为它就是在上面标有 (∗) 的解
中第一个立方根中的表达式。因此, 我们发现了

(5 +
√−1)3 = 110 + 74

√−1

把上面等式的两边取立方根, 得到

5 +
√−1 =

3√
110 + 74

√−1

类似的计算证明 (−5−√−1)3 = −110 + 74
√−1, 所以有

−5 +
√−1 =

3√
−110 + 74

√−1

最后, 我们能够使卡尔达诺公式有意义了。返回到 (∗) 并把刚刚
求得的三次方根代入, 我们发现

x =
3√

110 + 74
√−1−

3√
−110 + 74

√−1

= (5 +
√−1)− (−5 +

√−1)

= 5 +
√−1 + 5−√−1 = 10

正如前面验证过的那样, x = 10 是原来三次方程的一个根。奇怪的是,

我们得到了
√−1 的救援。

此时也许会提出一个严肃的质疑：最初你是如何知道 5 +
√−1是

110+74
√−1的立方根呢？它显然不是一目了然的,而且邦贝利自己也

必须依赖于设计好的例子 (就像这个例子那样), 根据例子他可以预先

知道这个立方根的身份。至于如何求一般表达式 a + b
√−1 的立方根,

他没有线索, 一段时间以来这仍就是一个谜。

邦贝利的方法, 他自己称其为“一个狂野的想法”, 工作起来既像

是一种魔术又有一些逻辑性的操作。他写道: “整个事物好像依赖于

诡辩而不是依赖于真理。”[3] 然而,他要引入负数平方根的愿望是非常

重要的一步。它使得求解三次方程成为可能, 它挽救了卡尔达诺的公

式, 它把一种新数放在数学的聚光灯下。
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一个如此令人头痛的概念, 正如我们所预料的那样, 它不会被普

遍接受, 也不会被立即接受。邦贝利之后 60 年, 笛卡儿在他的《几何》

中的短文里为形如
√−9这样的数杜撰了一个术语：“根不总是实在的;

有时它们是虚构的。”[4] 把一个数学概念标识为虚构的, 就如土地神

是虚构的, 疯帽匠是虚构的一样, 是要说它是假定的、荒谬的或者妄想

的。尽管有这样的言外之意, 但是他的术语一直延用到今天。

17世纪末,牛顿则给这个事物下了一个裁定,他裁定这些数为“不

可能的。”[5] 而莱布尼茨则采用拟生物学观点描述到“我们把负数单位

的虚构平方根称为有与无之间的两栖类。”[6] 把虚数比喻成两栖类也

许比把它们比作疯帽匠更好些, 但也好不到哪去。

直到进入 18 世纪, 这些数仍然是二等公民。但后来, 微积分中的

特定问题以及莱昂哈德�欧拉的敏锐洞察力促使虚数成为数学事业的

正式伙伴。同时也是他帮助制定了
√−1 的标准化符号表示 i。

使用这一记法, 今天我们定义复数为形如 z = a + bi 的数, 其中 a

和 b都是实数。(注意,本章标题中的字母终于出现了。)例如, 3+4i和

2-7i 都是复数。因为 a 和 b 都可以是零, 纯虚数 i(=0+1i) 和任意的实

数 a(=a+0i)都落入复数这一类数中。从这一角度看,复数包含我们在

第 Q 章中遇到的所有数系。

欧拉所做的不仅仅是提供了一个记法。他给出如何求一般量 a+bi

的三次方根或者说任意次根的方法, 并在这一过程中证明了非零复数

有两个不同的平方根, 三个不同的立方根, 四个不同的四次方根等等,

从而填充了一直困扰着他的前辈们的逻辑鸿沟。例如, 实数 8 显然有

一个立方根, 即实数 2。而 −1+i
√

3 和 −1− i
√

3 是 8 的另外两个立方

根, 当然这不是那样显然。(对此怀疑的读者建议分别求一下这两个复

数的立方, 可以看到其结果是 8。)

欧拉还研究了复数的幂。容易看到 i2 = (
√−1)2 = −1, i3=i2 × i =

−i。但是, 欧拉又去探究更大的游戏。以他惯有的大胆, 他证明了下面

这个著名的事实：

eiπ + 1 = 0
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正如任何一位数学家立即发现的那样, 没有其他什么方程与这个

方程相似, 因为它提供了整个数学中最重要的常量之间的联系。不仅

0 和 1 担任重要的角色, 而且 π(第 C 章), e(第 N 章), 还有 i(第 Z 章)

都出来谢幕。这正是一个全明星阵容。

更奇怪的是欧拉对 ii 的计算, 这是一个虚数的虚幂。想出这样的

东西都觉得很荒谬, 但是计算它所需要的只是上面的欧拉公式和两个

熟悉的幂的法则：

(ar)s = ars = (as)r, a−r = 1/ar

(单凭想象) 假设底和幂是复数时这些法则也可以使用, 那么我们推理

如下

eiπ + 1 = 0 表明 eiπ = −1, 这个等式又表明 eiπ = i2

对上面最后等式的两边求 i 次幂, 得到 (eiπ)i=(i2)i, 然后运用第一个幂

运算的法则把这个式子变成

ei2π = (ii)2

又因为 i2 = −1, 所以我们有 e−π=(i i)2。在两边取平方根得到√
e−π = ii

最后, 因为 e−π 等于 1/ eπ, 所以我们得出结论

ii =
1√
eπ

注意, 此时一个虚数的虚幂变成一个实数

1√
eπ

这太不可思议了。一个世纪后, 美国逻辑学家本杰明�皮尔斯在谈到

这个奇怪的结果时, 他概括了大部分人对欧拉发现的反应：“我们毫不

理解这个等式的含义,但是,我们能够肯定它预示着某些非常重要的东

西。”[7]

欧拉因为普及了复数而得到应得的荣誉。他说明了如何求它们的

幂、方根, 甚至定义了诸如它们的对数等。在某种意义上, 他建立了它

们的算术和代数合法性。
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但是路还很漫长。在随后的一个世纪中,很多数学家发展了复函数

的微积分,其中的领军人物就是法国的奥古斯丁–路易斯�柯西 (1789―

1857)。拥有这些革新成果, 数学家们能够求得诸如 z3 + 4z − 2i 的导

数, 以及下面这样的积分：
∫

eiz

i
dz

复数的确走过了一段漫长的路。

但是, 还有一个起决定作用的结果, 从而确立了复数的特殊地位。

它被称为代数基本定理, 它确立了复数超过有史以来其他数系的代数

优越性。因此, 它当然是数学的伟大定理之一。

这个基本定理的证明超出了本书的范围, 但是我们可以描述一下

它说的是什么以及它为什么很重要。作为一个定理, 在它的名字里出

现代数一词没有什么好惊讶的, 它涉及的就是方程的解。

回到第 A 章, 在那里我们讨论了自然数：1, 2, 3,· · ·。无论什么标
准,这些数都是最简单、最不复杂的数, 而且它们的简单性就是它们的

魅力和魔力的一部分。但同时, 它也展示出它们对求解方程是不充分

的。

例如, 假设我们希望求解 2x + 3 = 11。它的系数是 2, 3 和 11, 所

以这个方程是在自然数系内写出来的。另外, 它的解是 x = 4, 又是一

个自然数。对于这个例子, 自然数就足以生成这个方程和它的解。

但是, 对于方程 2x + 11 = 3 又如何呢？尽管我们仍然可以在自然

数系内写出它, 但是这个方程没有自然数解。因为, 即便我们让 x 为

最小的自然数 1,表达式 2x + 11的值也是 2(1)+11=13,这个值远远超

出方程右边的 3。因此,存在这样一类方程,我们可以用自然数表示它,

但是它没有自然数解。因此, 自然数是代数不完全的。

同样,实数系也有不足。考虑二次方程 x2 +15 = 0,它的确以实数

(其实是正整数)作为它的系数。然而,它的解 x =
√−15不是实数。因

此, 还存在这样一类方程, 我们可以用实数表示它, 但是它在实数系内

没有解。实数同样也是代数不完全的。
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但是, 复数却没有这样的缺陷。这样的代数“越狱”是不可能的。

这就是代数基本定理的实质。它保证对于系数为复数的多项式方程,解

一定是复数。这对于诸如 3x+8=2+3i这样的一次方程为真, 这个方程

有复数解 x = −2+i, 对于二次方程 x2 + x = 11 + 7i 也为真, 这个方程

有复数解 x = 3+i和 x = −4−i。而且这个定理同样适用于诸如下面这

样的五次方程：

5x5 + ix4 − 3x3 + (8− 2i)x2 − 17x− i = 0

这个方程必定有五个解 (可能有重复),全都是复数。事实上,多项式的

次数已经不再是问题。代数基本定理说任意写于复数系内的 n次多项

式方程都将有 n 个解 (可能有重复), 这些解本身都是复数。

10 德国马克上的高斯像

我们应该看到, 这个定理并没有给出求这些复数解的明确的方法,

而只是证明了它们的存在。尽管这样, 它还是一个非常重要且非常有

力的结果, 因为它指出了复数系对于提供任意多项式方程的解是充分

的。

18 世纪很多数学家, 包括欧拉都相信这个定理是真的, 但是都没

能给出令人满意的证明。[8] 这必须得等待卡尔�弗里德里希�高斯的

登场, 他是在这本书中反复出现的一位数学家。在第 A 章, 我们是以
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历史上最重要的数论学家之一介绍他的, 很高兴在本书的结尾又能够

遇到他。1799年他在 Helmstadt大学的博士论文中给出了代数基本定

理的首次证明。这篇论文解决了一个如此重要的问题, 因此被认为是

整个时代的最伟大的数学博士学位。它的存在使其他的博士学位取得

者谦逊。

卡尔达诺认为虚数“无用”,莱布尼茨认为它们是现实和虚构之间

的“两栖类”, 而欧拉则探究了它们一些零散却很奇异和迷人的性质。

但是, 正是高斯确立了复数是求解方程的理想数系的地位。就其现实

意义来说, 代数基本定理确立了代数学家的天堂——复数。
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到此, 26个字母已经用完了。此时,很多读者都会长舒一口气。我

们的数学旅行开始于第 A 章的算术基本定理。在中途第 L 章, 我们遇

到了微积分的基本定理。最后, 我们结束于代数基本定理。

这些基本定理伴随着数学和数学家、图表和公式、争议和论战。从

A 到 Z 的旅途中, 我们从中国走到剑桥, 从泰利斯到现代计算机。的

确, 每一章都可以进一步向纵深挺进, 但是由于篇幅的限制, 我们不能

在一个课题上逗留过长时间。也许有些章节应该彻底放弃, 但是作者

出于个人的喜好, 还是保留了它们。

总之, 本书只是我个人定制的旅行。我要感谢各位读者的相伴。
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